İçeriğe atla

Schmidt–Cassegrain Teleskobu

Schmidt-Cassegrain'de ışık yolu

Schmidt–Cassegrain teleskobu (SC), basit küresel yüzeyleri kullanarak kompakt bir astronomik alet yapmak için bir Cassegrain reflektörünün optik yolunu bir Schmidt düzeltici plakayla birleştiren bir katadioptrik teleskoptur . Bu teleskoplar kırılmalı teleskop ile Newton teleskobunun bir melezidir. Teleskopta Schmidt–Cassegrain veya Maksutov-Cassegrain türlerinde olduğu gibi Newtonyan teleskoplardaki aynalar ve kırılmalı teleskoptaki mercekler bir arada kullanılabildiği gibi yine bu teleskop ailesinin özel bir türü olan düzeltici merceğe ihtiyaç duymayan Ritchey-Chretien tipi teleskoplarda ise sadece çukur aynalar kullanıldığı görülmektedir.

Ancak her halükarda görüntünün gözlemlendiği yer bu teleskoplarda Newton (reflektör) teleskopların aksine optik tüpün ortasında değil aynen kırılmalı (refraktör) teleskoplarda olduğu gibi optik tüpün başlangıcında yer alır. İlaveten ışık yolu uzun olduğu için bu teleskoplarda Newton veya kırılmalı teleskopların aksine kısa bir tüp içinde çok yüksek büyütme oranlarına ulaşılabilmektedir.

Buluş ve tasarım

Bir kaldırım toplantısında Schmidt-Cassegrain teleskopunu gösteren insanlar

Amerikalı astronom ve lens tasarımcısı James Gilbert Baker ilk olarak 1940 yılında Bernhard Schmidt'in Schmidt kamerası için icat ettiği bir Cassegrain dizaynından etkilenip bu tür teleskobun yapımını önerdi.[1][2] Mount Wilson Gözlemevi'ndeki optik mağaza, ordu için optik tasarım araştırmalarının bir parçası olarak II. Dünya Savaşı sırasında bu teleskoplardan ilkini üretti.[3] Schmidt kamera da olduğu gibi bu tasarım küresel birincil ayna ve Küresel anormalliğin giderilmesi için Schmidt düzeltici plakasını teleskop kullanır . Bu Cassegrain konfigürasyonunda, dışbükey ikincil ayna bir alan düzleştirici görevi görür ve görüntüyü delikli birincil aynadan birincilin arkasında bulunan bir son odak düzlemine iletir. Bazı tasarımlar, odak düzleminin yakınında ek optik elemanlar (alan düzleştiriciler gibi) içerir. Bu tasarımı kullanılarak yapılan ilk büyük teleskop , St Andrews Üniversitesi'ndeki 1962 James Gregory Teleskobuydu .

2021 itibarıyla, James Gregory Teleskobu aynı zamanda en büyük Schmidt-Cassegrain olarak kabul edilmektedir.[4] Teleskop, dolunayda 60 kata kadar çıkan geniş görüş alanıyla dikkat çekiyor.[4]

Uygulamalar

Schmidt-Cassegrain tasarımı, tüketici teleskop üreticileri arasında çok popülerdir, çünkü üretimi kolay küresel optik yüzeyleri, yansıtıcı bir teleskopun açıklığı başına daha düşük maliyetle bir kırılma teleskobunun uzun odak uzaklığına sahip bir alet oluşturmak için birleştirir. Kompakt tasarım, pazarlanabilirliğini artıran verilen açıklığı için çok taşınabilir hale getirir. Yüksek f (büyütme) oranları, önceki Schmidt kameraları gibi geniş alanlı bir teleskop olmadıkları, ancak daha dar alanlı derin uzay ve gezegensel görüntüleme için iyi oldukları anlamına gelir.

Bu tasarım Rusları da etkilemiş Rus bilim adamı asker Dmitri Dmitrievich Maksutov bu tasarımdan yararlanarak bu teleskobun özel bir türü olan Maksutov (Mak) teleskobunu yaratmıştır. Gezegen gözlemlerinde ve karasal gözlemlerde Schmidt-Cassegrain teleskopları kadar iyi olan ve kapalı dizayn Newtonyan, Ritchey Chretien ve Schmidt Cassegrain teleskopların aksine tıpkı bir kırılmalı teleskop gibi kolimasyon gerektirmeyen bu tür ne yazık ki derin uzay gözlemlerinde dar görüş açısı ve yüksek büyütme oranından o kadar iyi değildir. İlaveten üst düzeltici merceğin 120 mm'den sonra yapımı son derece zor ve pahalı olduğundan bu açıklığın üstünde nadiren Mak teleskop bulunur hele 150–200 mm'nin daha üstünde optik açıklığa sahip Maksutov teleskoplara neredeyse hiç rastlanmaz.

Yine bu tasarımın diğer bir türü olan Hubble teleskobunun da dizayn edildiği Ritchey-Chretien türü dizayn ise Maksutov veya Schmidt Cassigrain türevinin aksine ayna mercek değil doğrudan iki çukur aynanın kullanılması ile yapılmıştır. Bu dizayn Schmidt Cassegrain veya Maksutov'un aksine düzeltici merceğe ihtiyaç duymaz. Newton teleskobu ve kırılmalı teleskoptan epey fazla ancak Schmidt-Cassigrain ve Maksutov teleskobundan az bir f büyütme oranına sahiptir. Görüntünün gözlemlendiği yer ise kırılmalı teleskop ve diğer Schmidt-Cassigrain Maksutov teleskopları gibi optik tüpün arkasındaki başlangıç noktasıdır. Astrofotoğrafçılıkta derin uzay gözlemlerinde geniş görüş açısı ve hassasiyet nedeniyle tercih edilen teleskop türlerinden biri olsa da karasal ve gezegen gözlemlerinde orta seviye bir kalite sunmaktadır. Schmidt Cassegrain ve Maksutov'un aksine açık dizayn olması nedeniyle Newton teleskobu gibi tozlanmaya karşı hassastır ve Newton teleskobu gibi gözlem öncesi ayarlama (eşleştirme-kolimasyon) yapılması gerekmektedir.

Türev tasarımlar

Bir Schmidt-Cassegrain'in düzeltici ve birincil aynasının görünümü.

Schmidt-Cassegrain teleskop tasarımının birçok varyasyonu olsa da (her ikisi de küresel aynalar, her iki ayna da küresel olmayan veya her birinden biri), bunlar iki ana türe ayrılabilir: kompakt ve kompakt olmayan. Kompakt formda, düzeltici plaka birincil aynanın odağında veya yakınında bulunur. Kompakt olmayanda, düzeltici plaka birincil aynanın eğrilik merkezinde (odak uzunluğunun iki katı) veya yakınında kalır.

Kompakt tasarımlar, hızlı bir birincil ayna ile küçük, güçlü kavisli bir ikincil aynayı birleştirir. Bu, alan eğriliği pahasına çok kısa bir boru uzunluğu sağlar. Kompakt tasarımlar, f/2 civarında odak oranına sahip bir birincil aynaya sahiptir ve yine[5] bu iki aynanın ayrılması, f/10 civarında tipik bir sistem odak oranını belirler.

Çok iyi düzeltilmiş bir kompakt olmayan tasarım türü, tüm ayna yüzeylerinin ve odak yüzeyinin tek bir noktada eşmerkezli olduğu eş merkezli (veya tek merkezli) Schmidt-Cassegrain'dir: birincil eğrilik merkezinde optik olarak, kompakt olmayan tasarımlar, daha uzun tüp uzunluğu pahasına çoğu kompakt tasarımdan daha iyi sapma düzeltmesi ve daha düz bir alan sağlar, .

Ayrıca bakınız

  • Teleskop türlerinin listesi
  • Maksutov teleskobu
  • Ritchey-Chrétien teleskopu
  • Schmidt kamera
  • Schmidt-Newton teleskopu
  • Argunov-Cassegrain teleskopu
  • Newton teleskopu
  • Dobson teleskopu
  • Katadioptrik sistem

Kaynakça

  1. ^ Linfoot, E.H. (1956). "Colloquium on Schmidt optics". The Observatory. 76: 170-177. 
  2. ^ The General History of Astronomy, Volume 2, Part 2, Cambridge University Press, 1984, page 177
  3. ^ Abrahams, P., The Mount Wilson Optical Shop during the Second World War, American Astronomical Society Meeting 205, #02.01; Bulletin of the American Astronomical Society, Vol. 36, p.1339
  4. ^ a b "A short history of Scotland's largest telescope". Medium (İngilizce). 5 Nisan 2018. 27 Ekim 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Ekim 2019. 
  5. ^ "V. Sacek, Telescope-Optics.net page 10.2.2.4.2". 11 Ağustos 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Kasım 2021. 

Dış bağlantılar

Wikimedia Commons'ta Schmidt-Cassegrain telescopes ile ilgili çoklu ortam belgeleri bulunur

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Optik</span> fizik biliminin bir alt dalı

Optik, ışık hareketlerini, özelliklerini, ışığın diğer maddelerle etkileşimini inceleyen; fiziğin ışığın ölçümünü ve sınıflandırması ile uğraşan bir alt dalı. Optik, genellikle gözle görülebilen ışık dalgalarının ve gözle görülemeyen morötesi ve kızılötesi ışık dalgalarının hareketini inceler. Çünkü ışık bir elektromanyetik dalgadır ve diğer elektromanyetik dalga türleri ile benzer özellikler gösterir.

<span class="mw-page-title-main">Teleskop</span> uzaydan gelen her türlü radyasyonu alıp görüntüleyen, astronomların kullandığı, bir rasathane cihazı

Teleskop veya ırakgörür, uzaydan gelen her türlü radyasyonu alıp görüntüleyen astronomların kullandığı, bir rasathane cihazıdır. 1608 yılında Hans Lippershey tarafından icat edilmiştir ve 1609 yılında Galileo Galilei tarafından ilk defa gökyüzü gözlemleri yapmakta kullanılmıştır. Uzaydaki cisimlerden yansıyarak veya doğrudan gelen görülen ışık, ultraviyole ışınlar, kızılötesi ışınlar, röntgen ışınları, radyo dalgaları gibi her türlü elektromanyetik yayınlar; kozmos hakkında bilgi toplamak için çok gerekli kanıtlardır. Bu kanıtlar, klasik manada optik teleskoplarla ya da çok daha modern radyo teleskoplarla incelenir.

<span class="mw-page-title-main">Oküler</span>

Oküler diğer adıyla göz merceği, mikroskop, teleskop vb. sistemlerde kullanılan gözün hemen önündeki genelde akromatik mercek grubudur. Asıl amacı önündeki mercek sisteminin renk ve şekil alanlarındaki kusurlarını asgariye indirerek kullanıcıya net bir görüntü sağlamak görüntü kalitesini arttırmadır.

Geometrik optiklerde odak, görüntü noktası olarak da bilinen, ışık ışınının yakınsak kaynaklandığı noktadır. Ayrıca odak kavramsal olarak bir nokta olmasına rağmen, fiziksel olarak uzaysal boyuta sahiptir ve mavi daire olarak adlandırılır. Bu ideal olmayan odaklanma, optik görüntülemenin ışık sapmaları nedeniyle olabilir. Önemli anormalliklerin yokluğunda, en küçük muhtemel mavi daire, optik sistem açıklığındaki kırınım nedeniyle, Airy diskidir. Işık sapmaları, airy diski büyük açıklıklar için fazla küçük olduğu sürece, açıklık çapı arttıkça kötüleşmeye eğilimlidir.

<span class="mw-page-title-main">Ulupınar Gözlemevi</span>

Çanakkale Onsekiz Mart Üniversitesi Astrofizik Araştırma Merkezi (ÇAAM) ve Ulupınar Gözlemevi 2001 yılında kurulmuş, gözlemevi 19 Mayıs 2002 tarihinde resmen açılmıştır. Merkez ve Gözlemevi Çanakkale merkezine 10 km uzaklıkta "Radar Tepesi" nin güney yamacında Ulupınar Köyü'ne yakın bir bölgede, 410 m yükseklikte yer almaktadır.

<span class="mw-page-title-main">Optik teleskop</span>

Optik teleskoplar esas olarak elektromanyetik spektrumun görünür ışık kısmından ışığı toplayan ve odaklayan teleskop çeşididir. Kullanım amacı bakılan nesnenin doğrudan görünümü için büyütülmüş görüntüsünü oluşturmak, fotoğrafını çekmek ya da elektronik görüntü sensörleri üzerinden veri toplamaktır.Optik teleskop, başlıca elektromanyetik spektrumun görünür bölgesinden olmak üzere direkt görüş için büyütülmüş bir imaj oluştururken, bir fotoğraf yaratırken ya da elektronik imaj sensörleri boyunca veri toplarken ışığı odaklar ve toplar.

<span class="mw-page-title-main">Dmitri Dmitriyeviç Maksutov</span>

Dmitri Dmitriyeviç Maksutov, Rus/Sovyet optik mühendis ve amatör gökbilimcidir. Maksutov teleskobunun mucidi olarak bilinir.

<span class="mw-page-title-main">Kırılmalı teleskop</span> görüntülemek için lens kullanan bir optik teleskop türü

Kırılmalı teleskop veya refraktör, bir görüntüyü görüntülemek için lens (mercek) kullanan bir optik teleskop türüdür.Işığı kırmak yoluyla görüntüyü elde eder.Bunun için tüp sonunda odak dediğimız en büyük merceğin olduğu kısim vardir.ışık buradan görerek tüpün ucuna kadar ilerler tüp ucunda ise gözlemcinin büyütmede kullandığı mercek oküler bulunur. Sonradan çıkan aynalı teleskop'dan bu yönleri ile ayrılır. İlk ve uzun dönemden beri bilinen teleskop türüdür. Kırılmalı teleskop tasarımı başlangıçta casusluk camları ve astronomik teleskoplarda kullanıldı halen de belli ölçekte kullanılmaktadır ancak aynı zamanda uzun odaklı kamera mercekleri için de kullanılmaktadır. Bir refraktörün büyütmesi, objektif merceğinin odak uzunluğunun okülerinkine bölünmesiyle hesaplanır. Kırılma teleskoplarının tipik olarak önde bir lensi, ardından uzun bir tüp, daha sonra teleskop görüntüsünün odaklandığı arkada bir mercek veya enstrümantasyon bulunur. Başlangıçta teleskopların merceği bir elementdi, ancak bir asır sonra iki ve hatta üç elementli lensler yapıldı. Kırılma teleskopu teknolojisi, dürbün ve büyüteç lensleri gibi diğer optik cihazlarda sıklıkla uygulanan bir teknolojidir.

<span class="mw-page-title-main">Newton teleskobu</span>

Newton teleskobu, İngiliz bilim insanı Isaac Newton (1642-1727) tarafından icat edilen, 1668'de tamamlanan ve bilinen en eski fonksiyonel yansıtıcı teleskoptur. Newton teleskobunun basit tasarımı, amatör teleskop yapımcıları arasında çok popüler olmuştur.

<span class="mw-page-title-main">Maksutov teleskobu</span>

Maksutov, tüm yüzeylerin neredeyse "küresel olarak simetrik" olmasından yararlanan bir tasarımda küresel bir aynayı zayıf negatif bir menisküs merceğiyle birleştiren bir katadioptrik teleskop tasarımıdır. Negatif mercek genellikle tam çaplıdır ve teleskopun giriş göz bebeğine yerleştirilir. Tasarım, yansıtıcı teleskoplarda bulunan koma gibi eksen dışı sapmaların sorunlarını düzeltirken aynı zamanda renk sapmalarını da düzeltir. 1941 yılında Rus optisyen Dmitri Dmitrievich Maksutov tarafından patenti alındı. Maksutov, tasarımını, küresel bir birincil aynadaki zıt hataları düzeltmek için negatif bir merceğin küresel hatalarını kullanan Schmidt kamerasının arkasındaki fikir üzerine kurdu. Tasarım en yaygın olarak, tüm küresel elemanları kullanabilen, böylece üretimi basitleştiren entegre bir ikincil mercek ile bir Cassegrain varyasyonunda görülür. Maksutov teleskopları, 1950'lerden beri amatör piyasada satılmaktadır.

<span class="mw-page-title-main">Küresel sapınç</span> Optik sapma

Optikte, küresel aberasyon , küresel yüzeylere sahip elemanlara sahip optik sistemlerde bulunan bir sapma türüdür. Lensler ve kavisli aynalar başlıca örneklerdir çünkü bu şeklin üretimi daha kolaydır. Merkez dışında küresel bir yüzeye çarpan ışık ışınları, merkeze yakın gelenlerden daha fazla veya daha az kırılır veya yansıtılır. Bu sapma, optik sistemler tarafından üretilen görüntülerin kalitesini düşürür.

<span class="mw-page-title-main">Koma (optik)</span>

Olarak optik, koma ya da Komatik sapmaları bir optik sistem içinde sapmaları ifade eder Bazı optik tasarımları ya da bağlı olarak doğal lens ya da diğer bileşenlerin kusurları yıldızların çarpık görünmesi, kuyruklu yıldız gibi bir kuyruğu (koma) varmış gibi görünmesi gibi eksen dışı nokta kaynakları ile sonuçlanır. Spesifik olarak, koma, giriş göz bebeği üzerindeki büyütmede bir değişiklik olarak tanımlanır. Refraktif veya difraktif optik sistemlerde, özellikle geniş bir spektral aralığı görüntüleyenlerde, koma dalga boyunun bir fonksiyonu olabilir, bu durumda bir renk sapması şeklidir.

<span class="mw-page-title-main">Katadioptrik sistem</span>

Bir katadioptrik optik sistem biri kırılma ve yansıma genellikle lens ve kavisli aynalar (katoptrik) yoluyla bir optik sistem içinde bir araya getirilmiştir. Katadioptrik kombinasyonlar, projektörler, farlar, erken deniz feneri odaklama sistemleri, optik teleskoplar, mikroskoplar ve telefoto lensler gibi odaklama sistemlerinde kullanılır. Lensleri ve aynaları kullanan diğer optik sistemlere, gözetleme katadioptrik sensörleri gibi "katadioptrik" de denir.

<span class="mw-page-title-main">Katoptrik</span>

Katoptrik, yansıyan ışık fenomeni ve aynaları kullanan görüntü oluşturan optik sistemlerle ilgilenir. Aynı zamanda ışığın yansıması ile ilgilenen bilim dalıdır. Bir katoptrik sisteme ayrıca katopter (catoptre) denir.

<span class="mw-page-title-main">Dobson teleskobu</span>

Bir Dobson teleskobu, 1965 yılında John Dobson tarafından popüler hale getirilen ve amatör astronomlar için mevcut teleskopların boyutunu büyük ölçüde artırmasıyla tanınan, altazimut kundaklı bir Newton teleskop tasarımıdır. Dobson'ın teleskopları, büyük, taşınabilir, düşük maliyetli bir teleskop oluşturmak için hazır bileşenlerden üretilmesi kolay olan basitleştirilmiş bir mekanik tasarıma sahipti. Tasarım, bulutsular ve galaksiler gibi soluk, derin gökyüzü nesnelerini gözlemlemek için optimize edilmiştir. Bu tür bir gözlem, nispeten kısa odak uzaklığına sahip büyük bir objektif çapı ve daha az ışık kirliliği olan yerlere seyahat için taşınabilirlik gerektirir.

<span class="mw-page-title-main">Apokromatik mercek</span>

Bir apokromat veya apokromatik mercek (apo), kromatik ve küresel sapmayı çok daha yaygın akromatik lenslerden daha iyi düzelten bir fotoğrafik veya başka bir lenstir.

<span class="mw-page-title-main">Barlow mercek</span>

Adını Peter Barlow'dan alan Barlow merceği optik bir sistemdeki diğer optiklerle seri olarak kullanılan, optik sistemin etkin odak uzaklığını, sistemdeki kendisinden sonra gelen tüm bileşenler tarafından algılandığı şekilde artıran, ıraksak bir mercektir. Pratik olarak, bir Barlow merceği yerleştirmenin sonucu görüntüyü büyütmesidir. Gerçek bir barlow lens, tek bir cam eleman değildir, çünkü bu, kromatik aberasyona ve mercek asferik değilse küresel averasyona neden olur. Barlow mercekler bu sebeple yaygın olarak, akromatik düzeltme veya apokromatik düzeltme ile daha yüksek görüntü kalitesi için iki, üç veya daha fazla elementli mercek (cam) kombinasyonu kullanır.

<span class="mw-page-title-main">Objektif (optik)</span>

Optik mühendisliğinde objektif, gözlenen nesneden ışık toplayan ve gerçek bir görüntü üretmek için ışık ışınlarını odaklayan optik elemandır. Hedefler, tek bir mercek veya ayna veya birkaç optik elemanın kombinasyonları olabilir. Mikroskoplarda, dürbünlerde, teleskoplarda, kameralarda, slayt projektörlerinde, CD çalarlarda ve diğer birçok optik alette kullanılırlar. Objektiflere ayrıca obje lensleri, obje gözlükleri veya objektif gözlükleri de denir.

<span class="mw-page-title-main">Teleskobun tarihi</span>

Teleskopun tarihi, 1608'de Hollanda'da bir gözlük üreticisi olan Hans Lippershey tarafından bir patent sunulduğunda ortaya çıkan bilinen en eski teleskopun icadından öncesine kadar götürülebilir. Lippershey patentini almamış olsa da, buluşla ilgili haberler kısa sürede Avrupa'ya yayıldı. Bu erken tasarımı kırılmalı teleskoplar bir dışbükey objektif lens ve içbükey mercekten oluşuyordu. Galileo ertesi yıl bu tasarımı geliştirdi ve astronomiye uyguladı. 1611'de Johannes Kepler, bir dışbükey mercek ve bir dışbükey mercek merceği ile çok daha kullanışlı bir teleskopun nasıl yapılabileceğini açıkladı. 1655'e gelindiğinde, Christiaan Huygens gibi gök bilimciler, bileşik göz mercekleri olan güçlü ama hantal Kepler teleskopları inşa ediyorlardı.

<span class="mw-page-title-main">Çapraz ayna</span>

Yıldız köşegen,Yıldız diyagonal, dikme merceği, prizma diyagonal, diyagonal ayna veya çapraz ayna teleskoplarda kullanılan ve normal mercek eksenine dik bir yönden görüntülemeye izin veren açılı bir ayna veya prizmadır. Teleskop doğrultulduğunda veya başucuna yakın olduğunda daha rahat ve kolay görüntüleme sağlar. Ayrıca, elde edilen görüntünün sağ tarafı yukarı, ancak soldan sağa ters çevrilir.