İçeriğe atla

Saçılma parametreleri

Saçılma parametreleri veya S parametreleri (bir saçılma matrisi veya S matrisinin elemanları), sürekli hâlde elektrik sinyalleri ile uyarılmakta olan lineer elektrik devrelerinin davranışlarını tanımlayan parametreler. S parametreleri elektrik mühendisliği, elektronik mühendisliği, haberleşme sistemleri ve özellikle mikrodalga mühendisliğinde kullanılır.

S parametreleri benzer amaçlı parametrelerden oluşan bir ailenin üyesidir. Bu aileden diğer örnekler Y parametreleri,[1] Z parametreleri,[2] H parametreleri, T parametreleri ve ABCD parametreleri olarak sıralanabilir.[3][4] S parametreleri, lineer devrenin davranışını karakterize etmek için, diğer örneklerden farklı olarak, açık veya kısa devre durumları yerine uygun yük durumunu kullanır.

Devre elemanlarının (endüktans, kondansatör, direnç), kazanç, geriye dönüş kaybı, gerilim duran dalga oranı, yansıma katsayısı ve kuvvetlendirici kararlılığı gibi birçok elektriksel özelliği, S parametreleri kullanılarak ifade edilebilir. Saçılma terimi, RF'ten daha çok optik mühendisliğinde kullanılır; bir düzlem elektromagnetik dalga engelle karşılaştığında veya farklı dielektrik ortamlar arasında geçiş yaptığında görülen etkiyi tanımlar. S parametleri bağlamında ise saçılma, bir iletim hattında ilerlemekte olan akım ve gerilimin, hattın bir devreyle kesintiye uğraması sonucu karşılaştıkları süreksizlikten etkilenmesi ifade edilir. Bu durum dalganın, hattın karakteristik empedansından farklı büyüklükte bir empedansla karşılaşmasına eşdeğerdir.

S parametreleri bütün frekanslarda geçerli olsa da, daha çok sinyal güç ve enerjisinin, akım ve gerilimlerden daha kolay hesaplandığı, radyo frekansı (RF) ve mikrodalga frekanslarında çalışan devrelerde kullanılır. S parametreleri frekansa bağlı değerlerdir. Bu sebeple verilen herhangi bir S parametresi değeri için, karakteristik empedans ve sistem empedansının yanında, parametrenin ölçüldüğü frekans değeri de belirtilmelidir.

S parametreleri kolaylıkla matris formunda yazılabilir ve üzerinde matris cebiri kuralları uygulanabilir.

Arka plan

S parametrelerin tanımı ilk defa Vitold Belevitch'in 1945 tarihli tezinde yer buldu.[5] Toplu parametreleri devreleri sınırlı şekilde inceleyen Belevitch'in çalışmasında kullandığı isim, dağılım (repartition) matrisiydi. Saçılma matrisi terimi ise 1947 yılında, savaş döneminde, radarlar üzerine çalışan fizikçi mühendis Robert Henry Dicke tarafından, kendinden önceki yayınlardan bağımsız olarak ortaya kondu.[6][7]

S parametreleri yaklaşımında, ele alınan devre içerisinde direnç, kondansatör, empedans ve transistörler gibi temel devre elemanları ve bağlantılarının bulunduğu, diğer devrelerle kapılar aracılığıyla etkileşim içindeki bir kara kutu olarak değerlendirilir. Devre karakteristiği saçılma matrisi adını alan kompleks elemanlı bir kare matrisle ifade edilir. Burada kapılara gelecek sinyallere verilecek cevap hesaplanabilir. S parametreleri tanımına göre, devre küçük işaretler için lineer davranışı sağlayacak her türlü elemanı içerebilir. Bunun yanında devre kuvvetlendiriciler, zayıflatıcılar, filtreler, kuplörler gibi standart blokları da içerebilir.

Davranışı S parametreleriyle tanımlanmış bir devrenin kapı sayısı için herhangi bir sınır yoktur. Kapılar elektriksel işaretlerin devreye girdiği veya devreden çıktığı noktalardır. Devre kapıları genellikle, birinden akımın girip, diğerinden aynı büyüklükte akımın çıktığı, iki uçtan oluşur[8][9] S parametreleri kapıların daha çok koaksiyel veya dalga kılavuzu bağlantılara sahip olduğu frekanslarda kullanılır.

N kapılı bir devrenin saçılma matrisi N boyutlu bir kare matris olur; yani elemandan oluşur. Ölçüm frekansında her eleman, S parametresi, birimsiz bir kompleks sayıdır. Bu değer bir uzunluk, genlik ve açı, faz, ifade eder. Eldeki kompleks sayılar, kompleks veya polar koordinatlarla yazılabilir.

Bir devre için S parametreleri aşağıdaki büyüklüklerle birlikte belirlenmelidir:

  1. Frekans
  2. Karakteristik empedans (genelde 50 )
  3. Kapı numaraları sıralaması
  4. Devreyi etkileyebilecek, sıcaklık, kontrol gerilimi ve çalışma akımı gibi koşullar

Genel S parametreleri matrisi

Tanım

Genel çok kapılı bir devrede, her kapıya 1'den N'e kadar bir 'n' tam sayısı verilir; N toplam kapı sayısıdır. n. kapı için ilgili S parametresi, giden ve yansıyan 'güç dalgaları', ve , cinsinden tanımlanır.

Kurokawa[10] her kapı için giden dalgayı

ve yansıyan dalgayı

şeklinde tanımlar. Burada her kapıya ait kompleks referans empedans değerlerinin köşegen matrisi, bu matrisin, 'nin, eleman bazında eşleniği, ile her kapıdaki gerilim ve akımların sütun matrisi ve

'yi temsil eder.

Bazı durumlarda tüm kapıların referans empedans değerlerinin eşit olduğu kabul edilebilir. Bu takdirde giden ve yansıyan dalga ifadeleri

ve

şeklinde sadeleşir. Tüm kapılar için yansıyan güç dalgası, S matrisi ve giden güç dalgası cinsinden, aşağıdaki matris denklemiyle ifade edilebilir:

Burada S N x N'lik bir matristir; S'in elemanları bilinen matris notasyonu kullanılarak sütun ve satırlar ile de yazılabilir.

Resiprokluk

Bir devre pasif ve sadece resiprok malzemelerden oluşmuşsa resiprok olarak tanımlanır. Zayıflatıcılar, kabllar, dağıtıcı ve birleştiriciler bu tür yapılara örnek verilebilir. Resiprokluk halinde olur; başka bir ifadeyle S parametreleri matrisi transpozuna eşittir. Magnetik kutuplanmış ferrit gibi resiprok olmayan malzemeler içeren devreler ise resiprok olamaz. Resiprok olmayan devrelere başka bir örnek de kuvvetlendiricilerdir.

Kayıpsız devreler

Üzerinde hiç güç kaybı olmayan devreler kayıpsız olarak tanımlanır. Bu devreler için yazılır. Tüm kapılardan giren güçlerin toplamı, tüm kapılardan yansıyan güçlerin toplamına eşit olacaktır. Bu durumda S matrisi üniterdir. Yani yazılabilir; burada 'in eşlenik transpozu ve birim matristir.

Kayıplı devreler

Kapılarından giren güçlerin toplamı, yansıyan güçlerin toplamından küçük yapılar kayıplı devrelerdir. Devre üzerinde güç harcanır; eşitsizliği vardır. Bu durumda ve ifadesi pozitif tanımlıdır.

İki kapılılarda S parametreleri

İki kapılı devrelerin saçılma matrisi en çok kullanılan ve aynı zamanda daha büyük devrelerin yüksek dereceli matrislerinin oluşturulmasında temel blok olan yapıdır.[11] İkili kapılıda, giden ve yansıyan güç dalgaları ile saçılma matrisi arasında ilişki şöyle yazılır:

Matris denklemleri yazılırsa:

ve

elde edilir. Her iki denlem de devrenin kapılarından birindeki, 1 ve 2, giden ve yansıyan güç dalgası ilişkisini, devrenin S parametreleri, , , ve cinsinden açıklar. Denklemlere göre 1. kapıdan giren güç dalgası () ele alınırsa, dalganın kapının kendisinden () veya 2. kapıdan () çıktığı düşünülür. Ancak S parametrelerinin tanımına bakılırsa, 2. kapı sistem empedansına eşit () bir yükle sonlandırılmıştır; yani maksimum güç transferi teoremine göre, 'nin sıfır olması dolayısıyla 'den çıkış olmayacaktır. Böylece

ve

Benzer şekilde, eğer 1. kapı sistem empedansıyla sonlandırılmışsa sıfır olur, buradan

ve

Her 2-kapılı için S parametreleri şunları ifade eder:

giriş kapısı gerilim yansıma katsayısı
geri yönde gerilim kazancı
ileri yönde gerilim kazancı
çıkış kapısı gerilim yansıma katsayısı

Kaynakça

  1. ^ Pozar, David M. (2005); Microwave Engineering, Third Edition (Intl. Ed.); John Wiley & Sons, Inc.; s 170-174. ISBN 0-471-44878-8.
  2. ^ Pozar, David M. (2005) (op. cit); s 170-174.
  3. ^ Pozar, David M. (2005) (op. cit); s 183-186.
  4. ^ Morton, A. H. (1985); Advanced Electrical Engineering;Pitman Publishing Ltd.; s 33-72. ISBN 0-273-40172-6
  5. ^ Belevitch, Vitold "Summary of the history of circuit theory" 8 Nisan 2014 tarihinde Wayback Machine sitesinde arşivlendi., Proceedings of the IRE, vol.50, iss.5, pp. 848–855, May 1962.
    Vandewalle, Joos "In memoriam – Vitold Belevitch" 3 Kasım 2012 tarihinde Wayback Machine sitesinde arşivlendi., International Journal of Circuit Theory and Applications, vol.28, iss.5, pp. 429–430, September/October 2000.
  6. ^ Valkenburg, Mac Elwyn Van Circuit Theory: Foundations and Classical Contributions, p.334, Stroudsburg, Pennsylvania: Dowden, Hutchinson & Ross, 1974 ISBN 0-87933-084-8.
  7. ^ J. Appl. Phys. 18, 873 (1947); doi: 10.1063/1.1697561 A Computational Method Applicable to Microwave Networks R. H. Dicke
  8. ^ Pozar, David M. (2005) (op. cit);p170.
  9. ^ Morton, A. H. (1985) (op. cit.); p 33
  10. ^ Kurokawa, K., "Power Waves and the Scattering Matrix", IEEE Trans. Micr. Theory & Tech., Mar. 1965, pp194-202
  11. ^ J Choma & WK Chen (2007). Feedback networks: theory and circuit applications. Singapur: World Scientific. ss. Chapter 3, p. 225 ff. ISBN 981-02-2770-1. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

<span class="mw-page-title-main">HSL ve HSV</span> iki yaygın silindirik koordinat yeniden ifadesi

HSL ve HSV, 1970'lerde bilgisayar grafikleri araştırmacıları tarafından insan vizyonunun renk oluşturma özelliklerini algılama biçimiyle daha yakından uyumlu olması için tasarlanan RGB renk modelinin alternatif temsilleridir. Bu modellerde, her renk tonunun renkleri, alttan siyahtan üste beyaz arasında değişen nötr renklerin merkezi ekseni etrafında radyal bir dilim halinde düzenlenir. HSV temsili, farklı renkteki boyaların birbirine karışma şeklini, parlak renkli boyaların çeşitli renk tonlarını andıran doygunluk boyutu ve değişen miktarlarda siyah veya beyaz boya ile bu boyaların karışımına benzeyen değer boyutu modellenir. HSL modeli, Doğal Renk Sistemi (NCS) veya Munsell renk sistemi gibi daha algısal renk modellerine benzemeye çalışır ve Doygun renkleri 1⁄2 parlaklık değerinde bir dairenin etrafına yerleştirir, burada 0 veya 1 parlaklık değeri tamamen siyah veya beyazı temsil eder.

Pauli matrisleri 2 × 2' lik, karmaşık sayılar içeren Hermisyen ve üniter matrislerden oluşan bir settir. Genellikle Yunan alfabesindeki 'sigma' (σ), harfiyle sembolize edilirler. Bu matrisler:

Elektriksel gücün tanımı aşağıdaki gibidir.

Direnç - kapasitör devresi (RC devresi) veya RC filtresi direnç ve kapsitörlerden oluşan ve gerilim veya akım kaynağı tarafından beslenen bir elektrik devresidir.

Matematikte Abel testi sonsuz bir serinin yakınsaklığını belirlemek için kullanılan bir yöntemdir. Bu test matematikçi Niels Abel'e ithafen bu şekilde isimlendirilmiştir. Abel testinin farklı iki çeşidi vardır – birisi gerçel sayıların serileriyle kullanılır; diğeri ise karmaşık analizdeki kuvvet serileriyle kullanılır.

Yansıma Elektronikte radyo frekans devrelerinde ölçülen bir büyüklüktür.

Empedans uygunluğu elektronikte maksimum güç transferi için gereken kaynak ve yük empedansları arsındaki ilişkidir. Fizikte hemen hemen daima üretilen gücün yüke en yüksek verim ile aktarılması yani maksimum güç transferi yapılması hedeflenir. Elektronik devrelerde maksimum güç transferi için, yük empedansı kaynağa göre ayarlanır.

<span class="mw-page-title-main">Çevrel çember</span>

Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.

<span class="mw-page-title-main">İletim hattı</span>

İletim hattı, elektronik ve haberleşme mühendisliğinde, akımın dalga karakteristiğinin hesaba katılmasını gerektirecek kadar yüksek frekanslarda, radyo frekansı, alternatif akımın iletimi için tasarlanmış özel kablo. İletim hatları radyo vericisi, alıcısı ve bunların anten bağlantıları, kablolu televizyon yayınlarının dağıtımı ve bilgisayar ağları gibi yerlerde kullanılır.

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

Seri ve paralel devreler elektrik mühendisliğinde devre elemanlarının bağlanış şekillerini ifade eder. Seri devrelerde devre elemanları aynı hat üzerinde her elemanın çıkışı bir sonrakinin girişine bağlanacak şekildedir. Bütün elemanlar üzerinde aynı akım akar. Fakat devre elemanları üzerindeki gerilim farklı olabilir. Paralel devrelerde ise bütün elemanların girişleri de çıkışları da ortaktır. Bütün elemanların üzerindeki gerilim eşittir. Buna karşılık devre elemanları üzerinde akan akım farklı olabilir.

<span class="mw-page-title-main">Smith abağı</span> Grafik türü

Smith abağı veya Smith diyagramı, radyo ve mikrodalga frekanslarındaki iletim hatlarının tasarımı ve empedans eşlemesinde kullanılan bir grafiktir. Elektrik-elektronik ve haberleşme mühendisleri tarafından kullanılan bu abak Phillip H. Smith (1905–1987) tarafından icat edilmiştir. Smith abağı aynı anda empedans, admitans, yansıma ile saçılma katsayıları, kazanç konturu ve stabilite gibi çok sayıda parametreyi aynı anda gösterebilmektedir; bu yüksek frekans devreleri dışında mekanik titreşim analizinde de kullanılmasını sağlamıştır. Smith abağı genelde birim yarıçap içinde kullanılır; buna karşın abağın geri kalanı da elektronik osilatör ve stabilite analizinde kullanılmaktadır.

Suseptans elektrik ve elektronik devrelerinde kullanılan reaktif devre elemanlarının sanal iletkenliğidir. Terim ilk defa 1894 yılında Alman kökenli Amerikan bilim insanı Charles Proteus Steinmetz tarafından kullanılmıştır.

<span class="mw-page-title-main">Fermi'nin etkileşimi</span>

Parçacık fiziğinde, Fermi etkileşimi beta bozunmasının 1933'te Enrico Fermi tarafından önerilmiş bir açıklamasıdır. Teori, dört fermiyonun birbiriyle direkt etkileştiğini varsayar. Bu etkileşim bir nötronun bir elektron, bir nötrino ve bir protonla doğrudan bağlanmasıyla bir nötronun beta bozunmasını açıklar.