İçeriğe atla

Sayfa tablosu

Bir sayfa tablosunun ana bellekteki yerini belirtmek için, donanımda sayfa tablosunun başlangıcını işaret eden bir yazmaç (register) bulunur. Bu yazmaç “sayfa tablosu yazmacı” olarak tanımlanır.

Sanal bellekte sayfalar, belleği dizinleyen bir tablo kullanılarak yerleştirilirler. Bu yapı “sayfa tablosu (page table)” olarak adlandırılır. Bellekte tutulan sayfa tablosu sanal bellek adresinin numarasına göre dizinlenmiştir ve ona karşılık gelen gerçek sayfa numarasını içerir. Her program, sanal adres uzayını, ana bellekteki bellek uzayına dönüştüren kendine ait bir sayfa tablosuna sahiptir. Sayfa tablosu, ana bellekte mevcut olmayan sayfaların kayıtlarını da tutabilir. Her sayfa tablosunda geçerli bit (1 veya 0 ) tutulur. Eğer bu bit mantıksal sıfıra eşit ise sayfa ana bellekte mevcut değil demektir ve “sayfa hatası (page fault)” oluşur. Eğer bit mantıksal bire işaret ediyorsa sayfa ana bellekte mevcut ve geçerli bir fiziksel adrese sahip demektir.

Sayfa tablosu için gerekli depolama (saklama) boyutu ve kullanılan anabellek miktarının azaltılmasını sağlayan teknikler

  1. Sayfa tablosunun boyutlarını sınırlayan bir sınır kaydı tutmak. Eğer sanal sayfa numarası sınır kaydının sınırını aşarsa kayıtlar sayfa tablosuna eklenmelidir. Bu teknik, bir işlem daha fazla alana ihtiyaç duyduğunda sayfa tablosuna büyüme yeteneği kazandırır. Sonuç olarak sanal adres uzayı yalnızca ihtiyaç duyulduğunda büyük tutulacaktır.
  2. Bölmelere ayırmak (segmentation): Çoğu dil iki boyutları büyüyebilen iki ayrı alan gerektirdiği için tek boyutta büyümenin yetersiz olduğu durumlarda sayfa tablosu ikiye bölünür. İki ayrı sayfanın farklı sınırlara sahip olması desteklenir. İki sayfa tablosu kullanımı adres uzayını da ikiye parçaya (segment) böler. Sınır kaydı her iki parça için de tutulur. MIPS mimarisi de bu tekniği desteklemektedir.
  3. Sanal adrese bir hesaba dayalı adresleme (hashing) işlevi eklenerek sayfa tablosu veri yapısının sadece gerçek sayfa sayısı kadar boyutta olması sağlanabilir.Bu yapıya ters çevrilmiş (inverted) sayfa tablosu adı verilir.
  4. Birden fazla seviyeli sayfa tabloları kullanılabilir.
  5. Sayfa tabloları kullanımı için gerekli ana bellek miktarının azaltılması sayfa tablolarının tekrar sayfalanması ile sağlanabilir.

Ayrıca bakınız

Kaynakça

Dış bağlantılar

İlgili Araştırma Makaleleri

Komut kümesi mimarisi, CPU'nun yazılım tarafından nasıl kontrol edileceğini tanımlayan bilgisayar soyut modelinin bir parçasıdır. ISA, işlemcinin ne yapabileceğini ve bunu nasıl yapacağını belirterek donanım ve yazılım arasında bir arayüz gibi davranır.

Sadece okunabilir bellek. ROM, bilgisayarlarda ve diğer elektronik aletlerde kullanılan bir depolama birimidir. RAM gibi yazılıp silinebilen bir depolama birimi değildir. ROM içeriği sadece üretim anında yazılır. Kullanıcının kendi isteği doğrultusunda programlanamaz.

Bellek bilgisayarı oluşturan 3 ana bileşenden biridir.. İşlemcinin çalıştırdığı programı, lar ve programa ait bilgiler bellek üzerinde saklanır. Bellek geçici bir depolama alanıdır. Bellek üzerindeki bilgiler güç kesildiği anda kaybolurlar. Bu nedenle bilgisayarlarda programları daha uzun süreli ve kalıcı olarak saklamak için farklı birimler mevcuttur.

<span class="mw-page-title-main">Mikroişlemci</span> ana işlem biriminin fonksiyonlarını tek bir yarı iletken tümdevrede birleştiren programlanabilir sayısal elektronik bileşen

Mikroişlemci, işlemci olarak da bilinen, merkezî işlem biriminin (CPU) fonksiyonlarını tek bir yarı iletken tüm devrede (IC) birleştiren programlanabilir bir sayısal elektronik bileşendir.

NUMA, Düzensiz Bellek Erişimi veya Düzensiz Bellek MimarisiNon-Uniform Memory Access veya Non-Uniform Memory Architecture” (NUMA) çok işlemcililerde bellek erişim zamanının belleğin işlemci üzerindeki yerine bağlı olduğu bir bilgisayar belleği tasarımıdır. NUMA altında bir işlemci kendi yerel belleğine yerel olmayan bellekten daha hızlı bir şekilde ulaşır, diğer bir ifadeyle, bir başka işlemcinin yerel belleğinden veya işlemciler arasında paylaşılan bellekten daha hızlı erişir.

<span class="mw-page-title-main">Bilgisayar mimarisi</span>

Bilgisayar mimarisi, en küçüğe ve en başarılıya ulaşmayı hedeflerken aynı zamanda maliyeti de göz önünde bulundurduğu için sanat ve bilimin ortak buluştuğu nokta olarak da tanımlanır. Bilgisayar Mimarisi, bilgisayar parçalarının iç yapıları ve aralarındaki haberleşme bağlantıları ile ilgilidir.

Sanal bellek, fiziksel belleğin görünürdeki miktarını arttırarak uygulama programına (izlence) fiziksel belleğin boyutundan bağımsız ve sürekli bellek alanı sağlayan bilgisayar tekniğidir. Ana belleğin, diskin (ikincil saklama) önbelleği (cache) gibi davranmasıyla; yani disk yüzeyini belleğin bir uzantısıymış gibi kullanmasıyla gerçekleştirilir. Ancak gerçekte, yalnızca o anda ihtiyaç duyulan veri tekerden ana belleğe aktarılıyor olabilir. Günümüzde genel amaçlı bilgisayarların işletim sistemleri çoklu ortam uygulamaları, kelime işlemcileri, tablolama uygulamaları gibi sıradan uygulamalar için sanal bellek yöntemi kullanılmaktadır.

Sayfalama ya da bellek adresleme, durgun sanal bellek sayfalarının ikincil bellekte (teker) saklanarak daha sonra ihtiyaç duyulduğunda ana belleğe yüklenmesi işlemini içerir. Bir diğer anlamı, adres uzayının belli oranlarda bloklara ayrılmasıdır. Sayfalama, bellek mahallerine ulaşımı ve adreslemeyi kolaylaştırır. 6502 mikroişlemcili bir sistemde 65536'lık adres uzayı 256 adet 256 Baytlık hayalı sayfalara ayrılır. Genelde 6502 işlemcili sitemlerde 1. sayfa yığın olarak ayrılırken 0. sayfaya bakış tabloları veya veri blokları yerleştirilir.

<span class="mw-page-title-main">Etkin sayfalar ön belleği</span> Bilgisayar bileşeni

Etkin sayfalar ön belleği (ESÖ) (Translation Lookaside Buffer ) sanal bellek kullanan işlemcilerde adres dönüştürme işleminin hızlandırılmasını sağlayan bir tekniktir.

Sayfa hatası sanal bellek tekniğinde başvurulan veri o anda ana bellekte bulunamıyorsa oluşur ve aranan sayfa ana bellekte mevcut değil demektir.

Sanal bellekte Sayfa hatası meydana geldiğinde çok yüksek bulamama gecikmesine neden olur. Sanal bellek sistemleri tasarlanırken bu durumun yaratacağı yükü engellemek için Sayfa hatası denetimi sağlanmalıdır.

Ana bellekteki tüm sayfalar kullanımdayken sayfa hatası oluşması durumunda, işletim sistemi bir sayfayı değiştirmek üzere seçmelidir. Sayfa hatalarının en aza indirilmesi amaçlandığından çoğu işletim sistemi yakın bir zamanda kullanılmayacağını varsaydığı bir sayfayı seçer. İşletim sistemlerin bu varsayımları geçmiş durum değerlendirmelerine dayanarak gelecek durumun tahmin edilmesine dayanır. Bu tahminlerde kullanılan algoritmaların başında en uzun zamandır kullanılmayanla değiştirme gelir. İşletim sistemi en uzun zamandır kullanılmayan sayfanın daha yakın bir zamanda kullanılan sayfadan daha az gerekli olduğu varsayımı yaparak uzun zamandır kullanılmayan sayfayı istenen sayfayla değiştirmek üzere seçer.

<span class="mw-page-title-main">Sanal Adres Numarasının Gerçek Adres Numarasına Dönüştürülmesi</span>

Ana bellekte kullanılan gerçek adres numarası, gerçek adresin üst bölümünü, sayfa eklemesi ise gerçek adresin alt bölümünü oluşturur. Sayfa eklemesindeki bitlerin sayısı sayfanın boyutunu belirler ve değişim göstermez. Sanal adreslerle adreslenebilen sayfa sayısı gerçek adreslerle adreslenen sayfa sayısı ile örtüşmek zorunda değildir; sanal sayfa sayısının gerçek sayfa sayısının üzerinde olması sınırsız boyuttaki bellek izlenimini yaratmada esas alınan noktadır.

MIPS R2000 Adres Dönüştürme Önbelleği, DECStation 3100'de kullanılan MIPS R2000 her ne kadar basit bir uygulamaya sahip olsa da özyapısı günümüz adres dönüştürme belleklerininkine çok benzerdir. Bellek sistemi 4-KB sayfalar ve 32-bitlik adres uzayına sahiptir. Dolayısıyla, sanal sayfa numaraları 20 bit uzunluktadır. Sanal adres ile gerçek adres aynı boyutlara sahiptir. Adres dönüştürme önbelleği (ADÖ) 64 kayıt tutabilir ve tam eşlemelidir. ADÖ buyruk ve veri başvuruları tarafından paylaşılır. Her kayıt 64 bit genişliğindedir ve 20 bitlik etikete sahiptir ki bu etiket kaydın ADÖ' de tutulan sanal sayfa numarasıdır. Sanal sayfa numarasına karşılık gelen gerçek sayfa numarası da 20 bit uzunluğundadır ve geçerli bit, kirli bit gibi sayman bitlerine yer verir.

Bir sanal bellek sisteminde, bir sonraki sıradüzene tümüne yazmanın (write-through) yaratacağı gecikme çok büyük olduğundan bunu karşılamak bir ara bellekle sağlanamaz. Bunun yerine, geri yazma (write-back) yöntemi kullanılır. Bellekte sadece bir sayfa yenisiyle değiştirildiğinde sadece o sayfa kopyalanır. Burada kullanılan teknik bir alt seviyedeki sıradüzene yazma tekniğine geri kopyalama(copy back) benzerdir.

<span class="mw-page-title-main">Yazmaç öbeği</span>

Yazmaç öbeği, bir merkezi işlem birimindeki işlemci yazmaçlarının bir dizisini ifade etmektedir. Modern tümleşik devre tabanlı yazmaç öbekleri genellikle çok portlu hızlı durağan rastgele erişimli bellekleri (SRAM) kullanılarak sistemlere tümleştirilmektedirler. Bu tür rastgele erişimli bellekleri kullandıkları okuma ve yazma girişlerine göre ayrılır, fakat normal çok portlu durağan rastgele erişimli bellekler okuma ve yazma işlemlerini aynı girişleri kullanarak gerçekleştirebilmektedirler.

<span class="mw-page-title-main">Kod çözücü</span>

Kod çözücü (decoder), temel olarak kodlanmış verinin ilk halini tekrar elde etmek için kullanılmaktadır. Sayısal elektronikte kod çözücülerin basit mantığı, kodlanmış çoklu giriş kod çözücüye verilmekte ve çıkış olarak da farklı şekilde kodlanmış çoklu çıkış alınmaktadır. Bu kod çözücülere örnek, ikili kodlu onluk kod çözücülerdir ve burada verilen n sayıdaki giriş 2n sayıda çıkışa dönüştürülmektedir. Burada kod çözücüye seçme girişleri de konularak oluşturulan çoklu çıkışlardan seçim yapılması sağlanabilir. Kod Çözücüler, durağan rastgele erişimli bellek (SRAM) bit hücrelerinden oluşan bir yazmaç öbeğinde satırın seçiminde, 7 bölütlü görüntü için veya veri çoklama gibi birçok yerde kullanılmaktadır.

<span class="mw-page-title-main">Nehalem (mikromimari)</span>

Nehalem, İntel firmasının Eylül 2008'de piyasaya sürülen Core i7 işlemcisiyle birlikte kullanılmaya başlanmıştır. 2011'de Sandy Bridge mikromimarisi sunulana kadar İntel'in en gelişmiş mikromimarisi olarak piyasada kalmıştır. Selefi Core mikromimarisine göre paralelliği ve saat frekansını arttırmış, Core mikromimarisinde İntel'in kullanmadığı fakat daha önce NetBurst'de kullanılan Hyper Threading teknolojisi Nehalem ile tekrar kullanılmaya başlamıştır. Nehalem'le birlikte Core mikromimarisinde terkedilmiş olan üçüncü seivye bir önbellek de yonganın içerisine eklenmiştir. İntel, Nehalem ile ilk defa bellek denetim birimini işlemci yongasının içine koymuş ve front-side bus dan ayırmıştır.

<span class="mw-page-title-main">Multics</span>

Multics eskiden kullanılmış aynı anda birkaç işlem yapabilen (time-sharing) işletim sistemi idi. Proje 1964 yılında Cambridge, Massachusetts'de başlamıştır. Son çalışan işletim sistemi ise 30 Ekim 2000'de Kanada Ulusal Savunma Departmanı'nda kullanılmış ve daha sonra kapatılmıştır.

<span class="mw-page-title-main">Harvard mimarisi</span>

Harvard mimarisi, veri ve komutların Merkezi İşlem Birimine giden kanallarının ayrılması ile oluşturulmuş MİB mimarisidir. İsmini ilk kez bu mimariyi kullanan bilgisayar Harvard Mark I'den almıştır. Bu mimariyi kullanan makinalar, veriler ile komutlar arasında herhangi bir köprü bulundurmazlar. Veri adresi 8-bit iken program (komut) adresi genellikle 14-bittir.