İçeriğe atla

Sayısal türev

Sayısal analizde, fonksiyonun değerleri veya fonksiyon hakkında bilinen diğer bilgiler kullanılarak bir matematiksel fonksiyonun türevinin hesaplanmasında kullanılan algoritmalara sayısal türev denir.

sayısal türev kesen doğru grafiği

Sonlu farklar formülü

En basit yöntem sonlu fark yaklaşımı kullanmaktadır. (x,f(x)) ve (x+h,f(x+h))[1] noktalarından geçen kesen doğru civarındaki eğimin hesaplanması için basit bir iki nokta tahmini yapılır. x'teki değişikliği ifade eden küçük bir h sayısı seçilir, bu sayı negatif veya pozitif olabilir.

Bu çizginin eğimi şu şekilde tanımlanır:

Buna Newton'un bölünmüş fark formülü denir.

Kesen doğrunun eğimi teğet doğrusunun eğiminden farklıdır ve bu fark yaklaşık olarak h sayısına eşittir. h sayısı sıfıra yaklaşırken kesen doğrunun eğimi, teğet doğrusunun eğimine yaklaşır. Bu yüzden, tıpkı kesen doğrularının birbirine yaklaşarak teğet doğrusu oluşturması gibi f'in x'teki türevi bölünmüş farkın limit değeridir:

h yerine 0 konulmasıyla elde edilen sonuçta paydada 0 olduğundan türevin direkt hesaplanması mantıksız olabilir. Aynı şekilde, eğim (x-h) ve x noktaları kullanılarak da bulunabilir.Kesen doğrunun civarındaki eğimin hesaplanması için (x-h,f(x-h)) ve (x+h,f(x+h)) noktalarının kullanıldığı bir başka iki nokta formülü:

Alternatif iki nokta formülü

Bu durumda birinci dereceden hatalar iptal olur, bu nedenle kesen doğrunun eğimi h^2 ile orantılı olarak teğet doğrusunun eğiminden farklıdır. Bu yüzden h sayısının küçük değerlerinde teğet doğrusu için bu yaklaşım tek taraflı yaklaşımdan daha kesin bir sonuç vermektedir. Bu teoremde x noktasındaki eğim hesaplanmasına rağmen fonksiyonun x noktasındaki değerine gerek duyulmaz. Bu yöntemle bulunan eğim de bir hata payı içerir ve bu hata payını veren formül:

Hata payı

formüldeki “c” değeri “x-h” ve “x+h” noktaları arasında bir değerdir. Bu hata, hesaplamaların sınırlı hassaslıkla yapılmasından ve sayıların gösteriminden kaynaklanan yuvarlama hatasını içermez.

Yüksek mertebe yöntemleri

Türev hesaplamalarında kullanılan ve daha kesin sonuçlar veren yüksek mertebeden yöntemler olduğu gibi daha yüksek mertebeden türevlerin hesaplanması için yöntemler mevcuttur. Sayısal türev hesaplamalarında daha fazla nokta kullanılarak yapılan yaklaşımlarda daha iyi sonuçlar elde edilmektedir. Üç ve beş nokta üzerinden yapılan hesaplamalar daha yaygın olarak kullanılır.[2]

Üç nokta formülleri

Üç nokta formülleri

Beş nokta formülleri

Beş nokta formülleri

Kaynakça

  1. ^ Richard L. Burden, J. Douglas Faires (2000), Numerical Analysis, (7th Ed), Brooks/Cole. ISBN 0-534-38216-9
  2. ^ Abramowitz & Stegun, Table 25.2

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Parabol</span> ikinci dereceden olan fonksiyonların grafiği

Parabol, bir düzlemde alınan sabit bir "d" doğrusu ile sabit bir "F" noktasından eşit uzaklıktaki noktaların geometrik yerleştirilmesidir. Cebirde ise y=ax2+bx+c şeklindeki ikinci derece fonksiyonları grafiği olarak bilinir.

<span class="mw-page-title-main">Kuzey</span> dört ana yönden biri

Kuzey, dört ana yönden biri. Kuzey kutbunu işaret eder.

<span class="mw-page-title-main">Sinüs (matematik)</span>

Matematikte sinüs, trigonometrik bir fonksiyon. Sin kısaltmasıyla ifade edilir.

<span class="mw-page-title-main">Kalkülüs</span>

Başlangıçta sonsuz küçük hesap veya "sonsuz küçüklerin hesabı" olarak adlandırılan kalkülüs, geometrinin şekillerle çalışması ve cebirin aritmetik işlemlerin genellemelerinin incelenmesi gibi, kalkülüs sürekli değişimin matematiksel çalışmasıdır.

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

<span class="mw-page-title-main">Sayısal analiz</span>

Sayısal analiz, diğer adıyla nümerik analiz veya sayısal çözümleme, matematiksel analiz problemlerinin yaklaşık çözümlerinde kullanılan algoritmaları inceler. Bu nedenle birçok mühendislik dalı ve doğa bilimlerinde önem arz eden sayısal analiz, bilimsel hesaplama bilimi olarak da kabul edilebilir. Bilgisayarın işlem kapasitesinin artması ile gündelik hayatta ortaya çıkan birçok sistemin matematiksel modellenmesi mümkün olmuş ve sayısal analiz algoritmaları burada ön plana çıkmıştır. 21. yüzyıldan itibaren bilimsel hesaplama yöntemleri mühendislik ve doğa bilimleri ile sınırlı kalmamış ve sosyal bilimler ile işletme gibi alanları da etkilemiştir. Sayısal analizin alt başlıklarına adi diferansiyel denklemlerin yaklaşık çözümleri ve özellikle veri biliminde önem taşıyan sayısal lineer cebir ile optimizasyon örnek gösterilebilir.

Matematikte diferansiyel kalkülüs, fonksiyonların girdileri değiştikçe nasıl değiştiklerini konu alan bir kalkülüs alanıdır. Diferansiyel kalkülüsteki ana inceleme nesnesi türevdir. Oldukça yakından ilişkili diğer bir kavram da türetke ya da diferansiyeldir. Bir fonksiyonun, seçilmiş belirli bir girdi değerindeki türevi, fonksiyonun o girdi değeri yakınındaki davranışını tanımlar. Genel olarak, bir fonksiyonun belirli bir noktadaki türevi, fonksiyona o noktadaki en iyi doğrusal yaklaşımı belirler. Türev bulma işlemine "türev almak" denir. Kalkülüsün temel teoremi gereğince, türev alma işlemi integral alma işleminin tersidir.

<span class="mw-page-title-main">Ortalama değer teoremi</span>

Kalkülüste ortalama değer kuramı, sürekli bir eğrinin üzerinde seçilen herhangi bir bölüm üzerinde, türevi (eğimi) bu bölümün "ortalama" türevine eşit (koşut) olan en az bir noktanın bulunduğunu belirtmektedir. Geometrik olarak, verilen bir eğrinin en az bir noktasındaki teğet doğrusunun, eğrinin başlangıç ve bitiş uçlarını birleştiren doğruya paralel olacağını ifade eder. Kuram, fonksiyonların belirli aralıklar üzerindeki davranışlarına ilişkin genel çıkarımlar yapan kuramların kanıtlanmasında kullanılmaktadır.

<span class="mw-page-title-main">Taylor teoremi</span>

Kalkülüste Taylor teoremi, türevi tanımlı bir işleve bir nokta çevresinde, katsayıları yalnızca işlevin o noktadaki türevine bağlı olan polinomlar cinsinden bir yaklaştırma dizisi üreten bir sonuçtur. Teorem, yaklaştırma hesaplamalarındaki hata payına ilişkin kesin sonuçlar da verebilmektedir. Brook Taylor adlı matematikçinin 1712 yılında yaptığı çalışmalarından ötürü ismi bu şekilde anılan teoremin aslında bundan 41 yıl önce James Gregory tarafından bulunduğu bilinmektedir.

Sayısal analizde rahatlatma metodu, eliptik kısmi diferansiyel denklemlerin belirli biçimlerini, özel Laplace denklemini ve onun genelleştirilmesini, Poisson denklemini kapsayan denklem çözümlerine nümerik yaklaşımlar elde etmek için kullanılan metottur. Fonksiyonun şeklinin sınırlarının üzerinde verildiği kabul edilir ve de içinde hesaplanmasını gerektirir.

<span class="mw-page-title-main">Gradyan</span>

Bir skaler alanın yön türevi (gradyan) artımın en çok olduğu yere doğru yönelmiş bir vektör alanını verir ve büyüklüğü değişimin en büyük değerine eşittir.

<span class="mw-page-title-main">Eğim</span>

Matematikte bir doğrunun eğimi ya da gradyanı o doğrunun dikliğini, eğimliliğini belirtir. Daha büyük eğim, daha dik bir doğru demektir.

Sonlu fark, f(x + b) − f(x + a) matematiksel ifadesidir.

Sonlu farklar yöntemi bir sayısal yöntemdir. Sonlu fark denklemlerinden faydalanır. Bu denklemler ile diferansiyel denklemlerin analitik çözümlerine yaklaşılır.

<span class="mw-page-title-main">Kiriş (geometri)</span>

Geometride kiriş, bir çemberde, iki uç noktası da çemberin üstünde bulunan doğru parçası. Sekant, sekant doğrusu veya kesen, bir kirişin doğruya uzatılmış halidir. Diğer bir ifadesiyle, kiriş bir kesenin çember içinde kalan kısmıdır. Kiriş daha genel anlamıyla, herhangi bir eğrinin iki noktasını birleştiren doğru parçasıdır. Çemberin merkezinden geçen kiriş, aynı zamanda çemberdeki en uzun kiriş, o çemberin çapıdır.

<span class="mw-page-title-main">Durgunluk noktası</span>

Matematikte, genellikle kalkülüste, durgunluk noktası ya da değişim noktası, bir tek değişkenli diferansiyellenebilir bir fonksiyonun türevinin sıfır olduğu noktadır. Öyle bir noktadır ki fonksiyon azalmayı ve artmayı bırakır o noktada. Birden çok değişkenli fonksiyonlar için durgunluk noktası fonksiyonun, tüm kısmi türevlerinin sıfır olduğu noktadır.

<span class="mw-page-title-main">Lineer interpolasyon</span> eğri uydurma metodu

Lineer interpolasyon, lineer polinomlar kullanarak, verilerin bilindiği noktalardan yeni verilerin üretilmesini sağlayan bir eğri uydurma metodudur.

<span class="mw-page-title-main">Newton metodu</span>

Sayısal analizde, Newton-Raphson yöntemi olarak da bilinen ve adını Isaac Newton ve Joseph Raphson'dan alan Newton metodu, gerçel değerli bir fonksiyonun köklerine art arda daha iyi yaklaşımlar üreten bir kök bulma algoritmasıdır. En temel versiyonu, tek bir gerçek değişkenli x için tanımlı olan f fonksiyonu, fonksiyonun türevi f ′ ve f 'in bir kökü için bir x0 başlangıç tahmini ile başlar. Fonksiyon yeterli ön kabulleri karşılıyorsa ve ilk tahmin yakınsa, o zaman

<span class="mw-page-title-main">Rolle teoremi</span> reel türevlenebilir bir fonksiyonun iki eşit değeri arasındaki durağan noktalar üzerine bir reel analiz teoremi

Kalkülüste, Rolle teoremi veya Rolle lemması temel olarak, iki farklı noktada eşit değerlere sahip herhangi bir gerçel değerli türevlenebilir fonksiyonun, aralarında bir yerde, teğet doğrusunun eğiminin sıfır olduğu en az bir noktaya sahip olması gerektiğini belirtir. Böyle bir nokta, durağan nokta olarak bilinir. Bu nokta, fonksiyonun birinci türevinin sıfır olduğu noktadır. Teorem adını Michel Rolle'den almıştır.