Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.
Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.
Doğal sayılar, şeklinde sıralanan tam sayılardır ve kimi tanımlamalara göre 0 sayısı da bu kümeye dâhil edilebilir. Aralarında standart ISO 80000-2'nin de bulunduğu bazı tanımlar doğal sayıları 0 ile başlatır ve bu durum negatif olmayan tam sayılar için 0, 1, 2, 3, ... şeklinde bir karşılık bulurken, bazı tanımlamalar 1 ile başlamakta ve bu da pozitif tam sayılar için 1, 2, 3, ... şeklinde bir eşlenik oluşturur. Doğal sayıları sıfır olmadan ele alan metinlerde, sıfırın da dahil edildiği doğal sayılar bazen tam sayılar olarak adlandırılırken diğer bazı metinlerde bu terim, negatif tam sayılar da dahil olmak üzere tam sayılar için kullanılmaktadır. Özellikle ilkokul seviyesindeki eğitimde, doğal sayılar, negatif tam sayıları ve sıfırı dışlamak ve saymanın ayrık yapısını, gerçek sayıların bir karakteristiği olan ölçümün sürekliliğiyle karşıtlık oluşturmak amacıyla sayma sayıları olarak adlandırılabilir.
İyi-sıralılık ilkesi, küme kuramının bir önermesidir. Her küme iyi sıralı bir küme yapılabilir. Bu teorem sonluötesi tümevarımın her kümede uygulanabilmesini sağlar. İyi sıralılık ilkesi seçim aksiyomuna denktir.
Matematikte, bir S kümesinin boş olmayan her altkümesi için, en küçük bir eleman tanımlayan tam sıralara, S kümesi üzerinde tanımlı bir iyi-sıra denir. İyi-sıralılık özelliğine sahip bir S kümesi iyi sıralı bir kümedir.
Matematikte reel sayılar kümesi, Fransızca réel “gerçek” den gelmektedir. Oranlı sayılar kümesinin evrim sürecinden elde edilen bir varsayım kombinasyonudur. Reel sayılar kümesi sembolüyle gösterilir.
Süreklilik hipotezine göre bütün sonsuzların eşit olması mümkün değildir. 19. yüzyılın sonunda Alman matematikçi Georg Cantor'un ispatından beri gerçek sayılar kümesinin eleman sayısının, doğal sayılar kümesinin eleman sayısından fazla olduğu bilinmektedir. Bu, gerçek sayılar kümesinin eleman sayısının doğal sayıların alt kümelerinin sayısına eşit olduğu anlamına gelir. Genelde ile doğal sayılar kümesinin eleman sayısı ifade edilirken, bu durumda gerçek sayılar kümesinin eleman sayısının olduğu görülmektedir. Süreklilik hipotezi, bu iki sonsuzluk arasında başka derecelerde de sonsuzluk olup olmadığı sorusunu sorar.
Georg Cantor'un doğal sayılar ile reel sayıların birebir eşlemesinin yapılamayacağını göstermek için geliştirdiği yöntem. Böyle bir eşlemenin yokluğu sonsuz elemanlı kümelerin büyüklüklerinin karşılaştırılması kavramının gelişimi açısından son derece önemlidir.
Topolojik uzaylar, matematiğin Topoloji dalının başlıca uğraş konularıdır. Bir X kümesi ve bu kümenin alt kümelerinin bir kısmını içeren ve aşağıdaki varsayımları sağlayan S kümesinden oluşurlar:
Aritmetik; matematiğin sayılar arasındaki ilişkiler ile sayıların problem çözmede kullanımı ile ilgilenen dalı. Aritmetik kavramı ile genellikle sayılar teorisi, ölçme ve hesaplama kastedilir. Bununla birlikte bazı matematikçiler daha karmaşık çeşitli işlemleri de aritmetik başlığı altında değerlendirirler.
Georg Ferdinand Ludwig Philipp Cantor, Alman matematikçi. Kümeler kuramının kurucusudur. Kümeler arasında birebir eşlemenin önemini ortaya koydu, "sonsuz küme" kavramına matematiksel bir tanım getirdi ve gerçel sayıların sonsuzluğunun doğal sayıların sonsuzluğundan "daha büyük" olduğunu ispatladı. Ayrıca kardinal sayı ve ordinal sayı kavramlarını ortaya atmış ve bu sayıların aritmetiğini tanımlamıştır. Cantor'un buluşlarının matematik ve felsefede önemli yeri vardır.
Cantor, tamsayılar kümesinin kardinalitesinin reel sayılar kümesinin kardinalitesinden büyük olduğunu, paradokslu olarak söyleyecek olursak, reel sayılar sonsuz kümesinin, tam sayılar sonsuz kümesinden büyük olduğunu ispat etmiştir.
Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.
Küme, matematikte farklı nesnelerin topluluğu veya yığını olarak tanımlanmaktadır. Bu tanımdaki "nesne" soyut ya da somut bir şeydir. Fakat her ne olursa olsun iyi tanımlanmış olan bir şeyi, bir eşyayı ifade etmektedir. Örneğin, "Tüm canlılar topluluğu", "Dilimiz alfabesindeki harflerin topluluğu", "Masamın üzerindeki tüm kâğıtlar" tümcelerindeki nesnelerin anlaşılabilir, belirgin oldukları, kısaca iyi tanımlı oldukları açıkça ifade edilmektedir. Dolayısıyla bu tümcelerin her biri bir kümeyi tarif etmektedir. O halde, matematikte "İyi tanımlı nesnelerin topluluğuna küme denir." biçiminde bir tanımlama yapılmaktadır.
Sonsuz, eski Yunanca Lemniscate kelimesinden gelmektedir, çoğunlukla matematik ve fizikte herhangi bir sonu olmayan şeyleri ve sayıları tarif etmekte kullanılan soyut bir kavramdır.
Cantor teoremi, kümeler teorisinin başlıca teoremlerindendir. Teorem; boş olmayan herhangi bir X kümesinin kuvvet kümesinin kardinalitesinin, X kümesinin kardinalitesinden büyük olduğunu söyler. P(X) ile kuvvet kümesi gösterilirse, teoreme göre X kümesi ile P(X) arasında birebir eşleme yapılamaz.
Temel matematikte sayı doğrusu, kalın çizgiden oluşan ve her noktası ilgili bir reel sayıya karşılık gelen en temel koordinat sistemidir. Daha çok tamsayılardan oluşan özel işaretli noktalar, aralarında eşit mesafe olacak biçimde gösterilir. Aşağıdaki şekilde her ne kadar −9 ile 9 arasındaki sayılar gösterilse bile, doğruya tüm reel sayılar dahildir. Bu sayılar her iki yönde sonsuza kadar devam eder. Bu sayı doğrusu daha çok, basit toplama ve çıkarmayı, özellikle negatif sayıları öğretmeye yardımcı olmak için kullanılır.
Sıra teorisi, ikili bağıntıları kullanma sırasının sezgisel kavramını inceleyen bir matematik dalıdır. "Bu, şundan daha küçüktür" veya "bu, şundan daha öncedir" gibi durumları inceler.
Matematikte hemen hemen hepsi, sonsuz bir kümenin sonlu sayıda elemanı dışındaki bütün elemanları ya da sayılamayacak sonsuzluktaki bir kümenin sayılabilir bir alt kümesi dışındaki bütün elemanları için kullanılan bir terimdir.
Alef sayıları, matematikte, daha ayrıntılı söylemek gerekirse kümeler teorisinde, iyi sıralı olabilen sonsuz kümelerin kardinalitesini göstermek için kullanılan sayılardır. Alef sayısı ismini sembolünden, İbranice alef harfinden alır. Bazı eski matematik kitaplarında yanlışlıkla alef sembolü ters basılmıştır.