İçeriğe atla

Savonius rüzgâr türbini

Yüksek binanın önündeki Savonius rüzgar türbini
Japonya'nın Akihabara kentindeki bir Savonius rüzgar türbini.

Savonius rüzgar türbinleri, rüzgârın kuvvetini dönen bir şaft üzerinde torka dönüştürmek için kullanılan bir tür dikey eksenli rüzgâr türbinidir (DERT). Türbin, genellikle (ancak her zaman değil) dönen bir şaft veya çerçeve üzerine dikey olarak yerleştirilmiş, ya yere sabitlenmiş ya da havadaki sistemlere bağlanmış bir çok kanat profilinden oluşur.

Kökeni

Savonius rüzgar türbini, Finlandiyalı mühendis Sigurd Johannes Savonius tarafından 1922'de icat edildi ve 1926'da patentlendi.[1][2]

Avrupalılar daha önce onlarca yıl boyunca dikey rüzgar türbinlerinde kavisli kanatlarla deneyler yapmıştı. Bunlardan ilk bahseden kişi, aynı zamanda bir mühendis olan Csanád İlçesi Piskoposu Fausto Veranzio'dur. 1616 tarihli Machinae novae adlı kitabında kavisli veya V şeklinde kanatlara sahip birkaç dikey eksenli rüzgar türbini hakkında yazmıştır. Onun veya daha önceki örneklerin hiçbiri Savonius'un ulaştığı gelişme düzeyine ulaşamamıştır. Biyografisinde, Flettner rotoruna benzer, ancak kendi kendine dönen bir türbin tipi rotor geliştirme niyetinden bahsedilmektedir. Finlandiya'daki göllerde çeşitli küçük kürek teknelerinde rotoruyla deneyler yapmıştır. Araştırmalarının sonuçları bilinmiyor, ancak Magnus etkisi Felix van König (1978) tarafından doğrulandı[3] ABD'de biri 1925'te [4] ve diğeri 1928'de [5] Savonius tarafından alınan iki Savonius rüzgar türbin patenti dosyalandı.

İki ya da üç adet aerofoil, kepçeye benzer kesitin birleşimi şeklindedir. En yaygını iki adet kepçenin bulunduğu durumdur ve “S” şeklini andıran bir görüntüsü vardır. Savonius türbininde akışkan içbükey kanat üzerinde türbülanslı bir yol izler ve burada dönel akışlar meydana gelir. Bu dönel akışlar Savonius türbininin performansını düşürür, basit yapılarına rağmen bu nedenle pek fazla kullanılmazlar.

Su pompalama veya diğer yüksek tork, düşük devir gerektiren uygulamalar için uygundur ve genellikle elektrik şebekesine bağlantı yapılarak kullanılmaz.

Rüzgâr hızı ölçümlerinde kullanılan anemometreler de Savonius şekline sahiptir.[6]

İki Kepçeli Savonius'un şematik çizimi
Savonius Rüzgâr Türbini, çalışma prensibi şeması.(Rotor üst görünüş)

Ayrıca bakınız

Kaynakça

  1. ^ Solari, Giovanni (2019). Wind Science and Engineering: Origins, Developments, Fundamentals and Advancements. Springer. s. 570. ISBN 9783030188153. 10 Ekim 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Eylül 2024. 
  2. ^ Owens, Brandon N. (2019). The Wind Power Story: A Century of Innovation that Reshaped the Global Energy Landscape. John Wiley & Sons. s. 102. ISBN 9781118794180. 10 Ekim 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Eylül 2024. 
  3. ^ Felix van König (1978). Windenergie in praktischer Nutzung. Pfriemer. ISBN 3-7906-0077-6. 
  4. ^ "US1697574". 26 Haziran 2024 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Eylül 2024. 
  5. ^ "US1766765". 26 Haziran 2024 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Eylül 2024. 
  6. ^ TMMOB Elektrik Mühendisleri Odası http://www.emo.org.tr/ekler/58072be2820e868_ek.pdf 29 Mayıs 2015 tarihinde Wayback Machine sitesinde arşivlendi.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türbin</span>

Türbin, bir akışkanın enerjisini işe çevirmek için kullanılan alettir. Türbin bir mil ve üzerinde kanatçıklardan oluşur. Kullanılan akışkana göre türbinin yapısı değişir. Çalışma prensibi şu şekildedir. Akışkan türbinin kanatçıklarına çarparak türbin miline hareket verir, hareket milin çıkışında mekanik işe dönüşür.

<span class="mw-page-title-main">Rüzgâr türbini</span> Rüzgârın kinetik enerjisini elektrik enerjisine dönüştüren sistem

Rüzgâr türbini, rüzgârdaki kinetik enerjiyi elektrik enerjisine dönüştüren sistemdir. Rüzgar türbinleri, aralıklı yenilenebilir enerjinin giderek daha önemli bir kaynağı haline gelmekte ve birçok ülkede enerji maliyetlerini düşürmek ve fosil yakıtlara bağımlılığı azaltmak için kullanılmaktadır. Bir çalışma, 2009 yılı itibarıyla rüzgarın fotovoltaik, hidro, jeotermal, kömür ve gaz enerji kaynaklarına kıyasla "en düşük göreceli sera gazı emisyonlarına, en az su tüketimi talebine ve en olumlu sosyal etkilere" sahip olduğunu öne sürmüştür.

<span class="mw-page-title-main">Helikopter</span>

Helikopter, dikey kalkış ve iniş yapabilen döner kanatlı bir hava taşıtıdır. İsmin kökü Yunancada heliko pteron yani hareketli kanatlar anlamından gelir. Fransız Gustave Ponton d'Amécourt tarafından 1861'de ortaya atılmıştır. 1907 yılında Fransız Paul Cornu ilk motorlu helikopteri uçurmuştur.

<span class="mw-page-title-main">Hidroelektrik santrali</span>

Hidroelektrik santrali, barajda biriken su yer çekimi potansiyel enerjisi içermektedir. Su, belli bir yükseklikten düşerken, enerjinin dönüşümü prensibine göre Yerçekimi Potansiyel Enerjisi önce kinetik enerjiye daha sonra da türbin çarkına bağlı jeneratör motorunun dönmesi vasıtasıyla potansiyel elektrik enerjisine dönüşür. Buna da yenilenebilir enerji sınıfına giren hidroelektrik enerji santrali denir. Fizikten bilindiği gibi 1 kg'lık bir kütle, 1 m yükseklikten düştüğünde:

<span class="mw-page-title-main">Elektrik üreteci</span> Mekanik enerjiyi elektrik enerjisine dönüştüren aygıt

Elektrik üretiminde jeneratör, harekete dayalı gücü veya yakıta dayalı gücü harici bir devrede kullanılmak üzere elektrik gücüne dönüştüren bir cihazdır. Mekanik enerji kaynakları arasında buhar türbinleri, gaz türbinleri, su türbinleri, içten yanmalı motorlar, rüzgar türbinleri ve hatta el krankları bulunur. İlk elektromanyetik jeneratör olan Faraday diski, 1831 yılında İngiliz bilim adamı Michael Faraday tarafından icat edildi. Jeneratörler elektrik şebekeleri için neredeyse tüm gücü sağlar.

<span class="mw-page-title-main">Buhar türbini</span>

Buhar türbini, basınçlı buhardan termal enerjiyi çıkaran ve bunu dönen bir çıkış milinde mekanik iş yapmak için kullanan makinedir. Modern tezahürü 1884'te Charles Parsons tarafından icat edilmiştir. Modern bir buhar türbininin imalatı, 20. yüzyılda ilk kez kullanılabilir hale gelen teknolojiler kullanılarak yüksek kaliteli çelik alaşımlarını hassas parçalara dönüştürmek için gelişmiş metal işçiliğini içerir. Buhar türbinlerinin dayanıklılığı ve verimliliğindeki sürekli gelişmeler, 21. yüzyılın enerji ekonomisinin merkezinde yer almaya devam etmektedir.

<span class="mw-page-title-main">Kanat profili</span>

Kanat profili veya aerofoil, kanat, yelken, dümen, pervane kanadı, rotor veya türbin gibi bir akışkan içindeki hareketi kaldırma kuvveti oluşturabilen nesnenin kesit şeklidir.

<span class="mw-page-title-main">Gaz türbini</span> içten yanmalı motor tipi

Gaz türbini, bir tür sürekli ve içten yanmalı motordur. Bütün gaz türbinlerinde ortak bulunan ana bileşenler aşağıdaki gibidir:

<span class="mw-page-title-main">Francis türbini</span>

Francis turbini James B. Francis tarafından geliştirilmiş bir su türbini çeşididir. Radyal ve eksenel akış çeşitlerinin bulunduğu bir iç akış reaksiyon türbinidir.

<span class="mw-page-title-main">Rüzgâr gücü</span> Rüzgârdan elektrik enerjisi üretimi

Rüzgâr gücü, elektrik üretmek için rüzgâr türbinleri, mekaniksel güç için yel değirmeni, su veya kuyu pompalama için rüzgâr pompaları veya gemileri yürütmek için yelkenler kullanarak rüzgârın kullanışlı formundaki rüzgâr enerjisinin sonucudur.

<span class="mw-page-title-main">Rüzgâr gücünün çevre üzerindeki etkisi</span>

Rüzgâr enerjisinin başlıca etkisi, fosil yakıtlı santrallerin elektrik üretiminde neden olduğu kirliliği göstermemesidir. Değişik enerji kaynakları, klasik enerji kaynaklarıyla yer değiştirebilirken, rüzgâr enerjisinin çevresel maliyeti çok daha düşük olabilir.

Nordex SE, rüzgâr türbinleri tasarlayan, üreten ve satan bir Alman şirketidir. Yönetim kademesinin Hamburg'da bulunmasına rağmen şirketin merkezi Alman kenti Rostock’tadır. Üretim Rostock'un yanı sıra Çin'de ve kısa bir süre için de olsa Jonesboro, Arkansas gerçekleşir.

<span class="mw-page-title-main">Darrieus rüzgâr türbini</span>

Darrieus rüzgâr türbini, rüzgar enerjisinden elektrik üretmek için kullanılan bir tür dikey eksenli rüzgâr türbinidir (DERT). Türbin, dönen bir şaft veya çerçeve üzerine monte edilmiş bir çok kavisli kanat profili kanatlarından oluşur. Kanatların kavisi, kanadın yalnızca yüksek dönüş hızlarında gerilim altında gerilmesine olanak tanır. Düz kanatlar kullanan birkaç yakından ilişkili rüzgar türbini vardır. Türbinin bu tasarımı, Fransız havacılık mühendisi Georges Jean Marie Darrieus tarafından patentlenmiştir; patent başvurusu 1 Ekim 1926'da yapılmıştır. Darrieus türbinini aşırı rüzgar koşullarından korumak ve kendi kendine çalışmasını sağlamak konusunda büyük zorluklar vardır.

<span class="mw-page-title-main">Dikey eksenli rüzgâr türbini</span>

Dikey eksenli rüzgar türbini (DERT), ana rotor milinin rüzgara enine yerleştirildiği ve ana bileşenlerin türbinin tabanında yer aldığı bir rüzgar türbin türüdür. Bu düzenleme, jeneratör ve dişli kutusunun yere yakın yerleştirilmesine olanak tanıyarak servis ve onarımı kolaylaştırır. DERT'lerin rüzgara doğrultulmasına gerek yoktur, bu ise rüzgar algılama ve yönlendirme mekanizmalarına olan ihtiyacı ortadan kaldırır. İlk tasarımların başlıca dezavantajları arasında her devir sırasında önemli tork dalgalanması ve kanatlar üzerindeki büyük bükülme momentleri vardı. Daha sonraki tasarımlar, kanatları sarmal olarak süpürerek tork dalgalanmasını giderdi.

<span class="mw-page-title-main">Küçük rüzgâr türbini</span>

Küçük rüzgar türbini, rüzgar çiftlikleri'ndeki gibi büyük güçlü ticari rüzgar türbinlerinin aksine mikro elektrik üretimi için kullanılan rüzgar türbinidir.

<span class="mw-page-title-main">Rüzgâr türbini tasarımı</span>

Rüzgâr türbini tasarımı, rüzgârdan enerji elde etmek için rüzgâr türbininin şekil ve teknik özelliklerinin belirlenmesidir. Rüzgâr türbini kurulumu rüzgâr enerjisini almak, türbini rüzgâra yönlendirmek, mekanik dönüşü elektrik enerjisine çevirmek, türbini başlatmak, durdurmak ve kontrol etmek için gerekli sistemlerden oluşur.

<span class="mw-page-title-main">Rüzgar türbini aerodinamiği</span>

Rüzgarın enerjisi, rüzgar türbininin dönen kanatlarına rüzgarın uyguladığı aerodinamik kuvvetler yoluyla türbinin alternatöründe elektrik enerjisine çevrilir. Bu nedenle aerodinamik hesaplamalar rüzgar türbininde önemlidir. Çoğu makine gibi rüzgar türbinleri de hepsi farklı enerji kazanım kavramlarına dayanır.

<span class="mw-page-title-main">Eksenel kompresör</span>

Eksenel kompresör, gazları sürekli olarak basınçlandırabilen bir gaz kompresörüdür. Gazın veya çalışma sıvısının esas olarak dönme eksenine paralel veya eksenel olarak aktığı, dönen, kanat profili bazlı bir kompresördür. Bu, sıvı akışının kompresör boyunca bir "radyal bileşen" içereceği santrifüj kompresör, eksenel santrifüj kompresörler ve karışık akışlı kompresörler gibi diğer döner kompresörlerden farklıdır.

<span class="mw-page-title-main">Bahçe Rüzgâr Enerji Santrali</span>

Bahçe Rüzgâr Enerji Santrali, Türkiye'nin Osmaniye iline bağlı Bahçe ilçesinde bulunan bir rüzgâr enerji santralidir. Toplam 135 MW kurulu çıkış gücüne sahip 54 rüzgâr türbininden oluşan rüzgâr santrali, 2009 yılında devreye alındığında ülkenin en büyük rüzgâr santraliydi.

<span class="mw-page-title-main">Sigurd Johannes Savonius</span>

Sigurd Johannes Savonius Fin mimar ve mucit idi. Özellikle 1924'te icat ettiği Savonius rüzgâr türbini ile bilinir.