İçeriğe atla

Sarsım (fizik)

Kontrol Edilmiş

Sarsım (ayrıca ekivme), fizikte ivmenin değişme oranı, yani ivmenin zamana göre türevi, hızın zamana göre ikinci türevi ve konumun zamana göre üçüncü türevidir. Sarsım aşağıdaki gibi ifade edilebilir:

ivme,
hız,
konum
zamana karşılık gelir.

Sarsım vektörel bir büyüklüktür ve onun skaler büyüklüğünü ifade etmeye yarayan (örn. vektörel hız ile skaler hız arasında olduğu gibi) ayrıca bir birim yoktur. Vektörel olan bu büyüklük metrik sistemde metre bölü saniye küp (metre bölü saniye bölü saniye bölü saniye, m/s3 ya da m·s−3) olarak tanımlanır. Sarsım için uluslararası kabul edilmiş bir sembol yoktur, ancak İngilizce jerk kelimesinin baş harfi j yaygın olarak kullanılır. Ayrıca Newton yazımında ivmenin türevi anlamında ȧ olarak da kullanılabilir.

Ayrıca fizikteki kuvvet kavramının kütle ile ivmenin çarpımı olduğu düşünülürse, kuvvetin türevi gücüm de kütle ile sarsımın çarpımı olarak bulunur (Benzeri bir şekilde momentum da kütle ve hızın çarpımıdır.)

Uygulamaları

Sarsım mühendislikte kullanılmaktadır. Özellikle hız trenleri gibi güvenliğin önemli olduğu uygulamalarda ivmenin de değişikliğini (yani sarsımı) bilmek, güvenlik için önemlidir. Yolcuların stres durumundaki değişiklikler için gereken onun üzerine oturacagindan bir sabit güç hissetmis olacak; whereas pozitif jerk cisim üzerinde artan güç olarak felt olacaktir, vesüre göz önünde bulundurulduğunda, kaslardaki kasılmaların ya da ağrı durumunun uygun hale getirilebilmesi için sadece maksimum ivmenin değil maksimum sarsımın da belirlenmesi gerekir. Özellikle titreşimlerin uyartılarında sarsım dikkate alınır. Sarsımı ölçmek için sarsımölçer (jerkmetre) kullanılır.

Sarsım aynı zamanda İşlemeli üretim alanında da oldukça önemlidir. Kesme aletinin ivmesinde yaşanabilecek ani değişiklikler üründe hatalara yol açabilir. Bu yüzden bugünkü hareket kontrolörleri sarsım sınırlama özelliğini de içerir.

Ayrıca makine mühendisliğinde kam profili hazırlarken tribolojik nedenlerle sarsım, hız ve ivme ile beraber kullanılır.

Üçüncü dereceden hareket profili

Fizikte bir hareketin oluşabilmesi için sabit bir konumdan başka bir konuma doğru yer değiştirme olmalıdır. Aşağıdaki hız zaman grağine göre yer değişiminin evrelerindeki ivme ve sarsımdaki değişiklik şu şekilde sıralanabilir:

Hareket profili 7 bölümden oluşur:

  1. ivme artar, sarsım en yüksek pozitif değerdedir.
  2. sabit ivme (sıfır sarsım)
  3. ivmelenme azalır, istenen en yüksek hıza ulaşılır, sarsım en yüksek negatif değerdedir.
  4. sabit hız (sıfır ivme, sıfır sarsım)
  5. ters yönlü ivme artmaya başlar, sarsım en yüksek negatif değerdedir.
  6. sabit ters yönlü ivme (sıfır sarsım)
  7. ters yönlü ivme azalmaya başlar, hız sıfıra yaklaşır, sarsım pozitif en yüksek değerdedir.

Eğer ilk ve son durumlar birbirine oldukça yaklaşırsa, maksimum hız ya da ivme ulaşılamayabilir.

Jerk sistemleri

Bir jerk sistemi böyle bir sistemin davranışı bir jerk denklemi ile tanıtılır, bu formun bir denklemi Sprott 2003:

Örnek için, tasarlanmak istenen uygun basit elektronik devre bir jerk denklemi ile ifade ediliyor. Bu jerk devresi olarak biliniyor

Jerk sistemlerinin daha ilginç özelliklerinden biri kaotik davranışin olasılığıdır. Aslında,belli iyi-bilinen kaotik sistemler, Lorenz atraktörü ve Rössler haritası gibi geleneksel üç-birinci-dereceden diferansiyel denklemlerin bir sistemi olarak ifade ediliyor,ama bunun tek bir (oldukça karmaşık olmasına rağmen) jerk denkleminin içinde bileştirilmesi gerekir.

Bir jerk denkleminin örneği aşağıdadır:

Burada A ayarlanabilir bir parametredir. Bu denklemin A=3/5 için bir kaotik çözüm var ve jerk devresi aşağıdaki ile uygulanabilir:

Yukaridaki devre icinde tum dirençlerin esdeğeri,except dışında ve tüm kapasitörlerin eş-boyuttadır.baskın frekans olacak.op amp 0'in cikisi x degiskenine karsi olacak,1'in cikisi x'in ilk turevine karsi olacak ve 2'nin cikisi ikinci türeve karşı olacak.

Hesap-dışı açıklama

Jerk hesabı terimleri içinde tanımlandığında kavramsallaştırmak zor olabilir,eğer bu terimlerin içinde tanımı biz biraz basitleştirirsek,bir kuvvet (itme ve çekme) bir nesneye uygulanırsa,nesne harekete geçer.Kuvvet uygulandığı sürece nesne hızlanmaya devam eder.Nesne üzerinde çizgi boyunca hiçbir kuvvet olmadığını düşünüyoruz,sonra aniden nesne üzerinde bir kuvvet uygulanıyor. Bu kuvvet uygulamak ne kadar süre için uygulanıyor düşünmüyoruz. Ancak, gerçekte, kuvvet uygulama anında olmaz. Bir değişim her zaman zamanla olur. Jerk zamanla ivme değişimdir. Tipik olarak, bir kuvvet uygulandığında temas süresi,ikinci bir bölünmedir

Bir duvara tam itme,uygulamadan önce bir saniyenin bir kısmını alır.Eğer zorlamaya başladığınızda parmak uçlarınızda hafifçe basınç olacaktır.Baskı jerkin ne kadar süreceğini belirler. Eğer çok yavaş bir duvara itme varsa, aslında artan itmenin ne kadar olduğunu hissedebilirsiniz.Kuvvette olan değişim birkaç saniyenin arasıyla nispeten uzun bir süresi boyunca oluyor, çünkü böyle bir durumda, jerk, çok düşüktür.Bir kuvvet uygulanir ve kaldırılirsa Jerk olur. Ama böyle bir kuvvetin zamanı bir nesnenin üzerinde hareket olusturursa, burada jerk yoktur. (Bu nedenle ivme sabit ise buradaki sabit bir kuvvettir.)

kuvvet Ne kadar hızlı başlıyor onu itme veya çekme belirler yank ve daha sonra jerk. Pek çok uygulamada, bu kuvvet uygulandığında ne kadar hızlı önemli değildir ve bu nedenle biz genellikle hemen güçlerin uygulandığını düşünüyoruz. Jerkin yakin bir örnegi bir otomobil içinde frenin uygulanmasinin oranıdır.

Deneyimli bir sürücü yavaş yavaş artan bir yavaşlamaya (küçük jerk) neden olan fren uygular. Deneyimsiz bir sürücü ya da bir sürücü acil bir yanıtla yavaşlamada hızlı bir artışa (büyük jerk) neden olan ani fren uygular.Jerk hissiyle yolcunun başının ileri jerk nedeni belirgindir.

Denklemler

  • (yank: birim zamandaki güç)
  • (jerk: birim zamandaki ivme)
  • ,aşağıdaNewton'un ikinci kanunundan ile bölünüyor ve yukarıdaki iki ilişkiden:

Jerk yüksekse, kuvvet veya ivme daha yüksektir. Ivme değişikliği süresi kısaldıkça Bir köşede 'kırbaçlanan' bir lunaparktreni yüksek jerk gibidir. Düzgün jerk için, aşağıdaki denklem uygulanabilir:

burada a : son ivme a. : başlangıç ivmesi j : jerk (ivmenin değişimi) v : son hız u : ilk hız s : mesafe/yerdeğiştirme t : alınan zaman

Ayrıca bakınız

Notlar

Kaynakça

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kuvvet</span> kütleli bir cisme hareket kazandıran etki

Fizik disiplininde, kuvvet bir cismin hızını değiştirmeye zorlayabilen, yani ivmelenmeye sebebiyet verebilen - hızında veya yönünde bir değişiklik oluşturabilen - bir etki olarak tanımlanır, bu etki diğer kuvvetlerle dengelenmediği müddetçe geçerlidir. Itme ya da çekme gibi günlük kullanımda yer alan eylemler, kuvvet konsepti ile matematiksel bir netliğe ulaşır. Kuvvetin hem büyüklüğü hem de yönü önemli olduğundan, kuvvet bir vektör olarak ifade edilir. Kuvvet için SI birimi, newton (N)'dur ve genellikle F simgesi ile gösterilir.

<span class="mw-page-title-main">Yörünge</span> bir gökcisminin bir diğerinin kütleçekimi etkisi altında izlediği yola yörünge adı verilir

Gök mekaniğinde yörünge veya yörünge hareketi, bir gezegenin yıldız etrafındaki veya bir doğal uydunun gezegen etrafındaki veya bir gezegen, doğal uydu, asteroit veya lagrange noktası gibi uzaydaki bir nesne veya konum etrafındaki yapay uydunun izlediği kavisli bir yoldur. Yörünge, düzenli olarak tekrar eden bir yolu tanımlamakla birlikte, tekrar etmeyen bir yolu da ifade edebilir. Gezegenler ve uydular Kepler'in gezegensel hareket yasalarında tanımlandığı gibi, kütle merkezi elips biçiminde izledikleri yolun odak noktasında olacak şekilde yaklaşık olarak eliptik yörüngeleri takip ederler.

<span class="mw-page-title-main">İvme</span> hızın büyüklüğü ve / veya hız yönünün zamanla değiştiği hız

Fizikte ivme, hızın zamana göre türevi olarak tanımlanır. Büyüklüğü uzaklık/zaman2 olan bir vektörel niceliktir ve cismin hem hızının hem de yönünün şiddetlerindeki değişimini gösterir. İvmeölçer yardımıyla ölçülen ivmenin SI birimi metre/saniye²'dir.

<span class="mw-page-title-main">Newton'un hareket yasaları</span> Bilimsel Yasalar

Newton'un hareket yasaları, bir cisim üzerine etki eden kuvvetler ve cismin yaptığı hareket arasındaki ilişkileri ortaya koyan üç yasadır. İlk kez Isaac Newton tarafından 5 Temmuz 1687 tarihinde yayımlanan Philosophiae Naturalis Principia Mathematica adlı çalışmada ortaya konmuştur. Bu yasalar klasik mekaniğin temelini oluşturmuş, bizzat Newton tarafından fiziksel nesnelerin hareketleri ile ilgili birçok olayın açıklanmasında kullanılmıştır. Newton, çalışmasının üçüncü bölümünde, bu hareket yasalarını ve yine kendi bulduğu evrensel kütleçekim yasasını kullanarak Kepler'in gezegensel hareket yasalarının elde edilebileceğini göstermiştir.

1. Yasa
Eylemsiz referans sistemi adı verilen öyle referans sistemleri seçebiliriz ki, bu sistemde bulunan bir parçacık üzerine bir net kuvvet etki etmiyorsa cismin hızında herhangi bir değişiklik olmaz. Bu yasa genellikle şu şekilde basitleştirilir: “Bir cisim üzerine dengelenmemiş bir dış kuvvet etki etmedikçe, cisim hareket durumunu korur.”
2. Yasa
Eylemsiz bir referans sisteminde, bir parçacık üzerindeki net kuvvet onun çizgisel momentumunun zaman ile değişimi ile orantılıdır:
<span class="mw-page-title-main">Isı iletimi</span>

Isı iletimi ya da kondüksiyon, madde veya cismin bir tarafından diğer tarafına ısının iletilmesi ile oluşan ısı transferinin bir çeşididir.

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

<span class="mw-page-title-main">Katı cisim dinamiği</span>

Katı-cisim dinamiği, dış kaynaklı kuvvetler karşısında hareket eden birbiri ile ilişkili sistemlerin analizini inceler. Her bir gövde için, cisimlerin katı olduğu ve bu nedenle uygulanan kuvvetler nedeni ile deforme olmadıkları, sistemi tanımlayan taşıma ve dönme parametrelerinin sayısını azaltarak analizi basitleştirmektedir.

Fizikte, birim zamanda aktarılan veya dönüştürülen enerjiye ya da yapılan işe güç denir, P simgesiyle gösterilir. Uluslararası Birim Sistemi'nde güç birimi, saniyedeki bir joule'e eşit olan watt'tır kısacası J/s. Eski çalışmalarda güç bazen iş olarak adlandırılırmıştır. Güç türetilmiş bir nicelik ve skaler bir büyüklüktür.

Açısal hız, bir objenin birim zamandaki açısal olarak yer değiştirme miktarına verilen isimdir. Açısal hız vektörel olup bir cismin bir eksen üzerindeki dönüş yönünü ve hızını verir. Açısal hızın SI birimi radyan/saniyedir, ancak başka birimlerde de ölçülebilir. Açısal hız genellikle omega sembolü ile gösterilir. Açısal hızın yönü genellikle dönüş düzlemine diktir ve sağ el kuralı ile bulunabilir.

Eksarsım, fizikte sarsımın değişme oranını, diğer bir deyişle zamana göre türevini belirten vektörel bir büyüklüktür. Sarsımın zamana göre birinci türevi, ivmenin zamana göre ikinci türevi, hızın zamana göre üçüncü türevi, konumun zamana göre dördüncü türevidir. Eksarsım aşağıdaki gibi ifade edilebilir:

sarsım,
ivme,
hız,
konum
zamana karşılık gelir.

Çatırtı, fizikte eksarsımın değişme oranını diğer bir deyişle zamana göre türevini belirten vektörel bir büyüklüktür. Eksarsımın zamana göre birinci türevi, sarsımın zamana göre ikinci türevi, ivmenin zamana göre üçüncü türevi, hızın zamana göre dördüncü türevi, konumun zamana göre beşinci türevidir. Çatırtı aşağıdaki gibi ifade edilebilir:

eksarsım,
sarsım,
ivme,
hız,
konum
zamana karşılık gelir.

Gücüm, fizikte kuvvetin değişme oranını, diğer bir deyişle zamana göre türevini belirten vektörel bir büyüklüktür. Kütle ile sarsımın çarpımı olarak da ifade edilebilir. Göreli fizikte momentumun zamana göre ikinci türevi olarak gösterilir, çünkü kütle hıza bağlıdır. Bu nicelik için şu an için uluslararası ortak bir terim olmasa da, İngilizcesi olan yank sıklıkla kullanılır.

Ekgücüm, fizikte gücümün değişme oranını, diğer bir deyişle zamana göre türevini belirten, vektörel bir büyüklüktür. Kütle ile Eksarsımın çarpımı olarak da ifade edilebilir. Göreli fizikte momentumun zamana göre üçüncü türevi olarak gösterilir, çünkü kütle hıza bağlıdır. Bu nicelik için şu an için uluslararası ortak bir terim olmasa da, İngilizcesi olan tug sıklıkla kullanılır.

<span class="mw-page-title-main">Liénard-Wiechert potansiyelleri</span>

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

Fizikte, dairesel hareket bir nesnenin dairesel bir yörünge boyunca bir rotasyon ya da çemberin çevresinde yaptığı harekettir. Rotasyonun sürekli açısal değeriyle birlikte düzgün ya da değişen rotasyon değeriyle düzensiz olabilir. 3 boyutlu bir cismin sabit ekseni etrafındaki rotasyon parçalarının dairesel hareketini içerir. Hareketin denkliği bir cisim kütlesinin merkezini tanımlar.

Einstein-Hilbert etkisi genel görelilikte en küçük eylem ilkesi boyunca Einstein alan denklemleri üretir. Hilbert etkisi genel görelilikte yerçekiminin dinamiğini tarifleyen fonksiyonel işlemdir. metrik işaretiyle, etkinin çekimsel kısmı,

Elektromanyetizma fiziğinde, Abraham-Lorentz kuvveti elektromanyetik radyasyon yayması nedeniyle hızlanan yüklü bir parçacıktaki geri tepme kuvvet idir. Ayrıca radyasyon reaksiyon kuvveti veya kendinden kuvvet denir. Formül özel görelilik teorisini önceler ve ışık hızı düzeninin hızlarında geçerli değildir. Bunun göreli genellemesine "Abraham-Lorentz-Dirac kuvveti" denir. Bunların her ikisi de kuantum fiziği değil, klasik fizik 'in bilgi kapsamındadır. Bu nedenle yaklaşık olarak Compton dalga boyu veya altındaki mesafelerde geçerli olmayabilir. Ancak tamamıyla kuantum ve göreli olan benzer bir formül vardır, bu formül "Abraham-Lorentz-Dirac-Langevin denklemi" olarak adlandırılır.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

<span class="mw-page-title-main">Dize titreşimi</span>

Bir dizedeki (tel) [[titreşim]] bir ses dalgasıdır. Rezonans titreşen bir dizenin sabit frekanslı, yani sabit perdeli bir ses üretmesine neden olur. Telin uzunluğu veya gerginliği doğru şekilde ayarlanırsa üretilen ses bir [[müzik tonu]] olur. Titreşimli teller gitar, [[Viyolonsel|çello]] ve piyano gibi yaylı çalgıların temelini oluşturur.