İçeriğe atla

Sarkaç

Basit sarkaç düzeneği. Burada v hız vektörünü A ivme vektörünü gosteriyor.

Sarkaç bir ipin bir ucuna rahatlıkla sallanabilecek şekilde bağlanılan bir kütle ile oluşturulan düzenektir. Düzenek kütleçekim kuvveti yüzünden denge konumunu muhafaza etmeye meyillidir. Kütle denge konumundan alındığında yercekimi kuvveti tarafından denge noktasina getirilmek üzere hızlandırılacak ve bu da denge noktası etrafında bir salınıma yol acar.

Sarkaçın bu düzgün salınım hareketi zamanı ölçmek için kullanılabilmesini sağlar ve sarkaçlı saatler bu ilkeye gore çalışır.

Fransız fizikçi Foucault, Foucault sarkacı adı ile anılan hayali bir sarkaç yardımı ile dünyanın kendi ekseni etrafinda döndüğünün kanıtlanabileceğini öngörmüştür. Daha sonra da oldukça büyük bir sarkaç yardımı ile ilk kez dünyanın kendi ekseni etrafında döndüğünü gözler önüne sermiştir.

Basit bir yerçekimi sarkacı

Ölçmede kullanımı

Galileo Galilei tarafından tasarlanan sarkaçlı saat

En yaygın kullanım alanı sarkaçlı saattir. 2 saniye periyotlu bir sarkaç, her bir salınım bir saniyeye karşılık geldiğinden, saniye sarkacı olarak adlandırılır. Sarkaçlı saatler sürtünmeden dolayı hassas değildirler. Sarkaçlar, müzik alanında metronom olarak kullanılır. Sarkaç bir matematik aleti olarak ilk defa Galileo Galilei tarafından kullanılmıştır.

Periyot denklemindeki g'nin (yerçekimi ivmesi) var olması nedeniyle dünya üzerinde değişik noktalarda belirli bir sarkacın frekansı farklı olur. Dünya üzerindeki değişik noktalarda yerçekimi ivmesi %0,5'lere kadar değişir. Dolayısıyla, mesela Glasgow, İskoçya'da (g = 9.815 63 m/s2) bulunan hassas bir sarkaçlı saatin, Kahire, Mısır'a (g = 9.793 17 m/s2) getirildiğinde doğru ölçüm yapması için sarkaç boyunun %0,23 oranında kısaltılması gerekir.

Sarkaç bu özelliği sayesinde Dünya yüzeyinde herhangi bir noktadaki yerçekimini ölçmede (gravimetri) kullanılabilir. Unutulmamalıdır ki g = 9.8 m/s² değeri yerleşime göre değişen bir hassasiyet gerekmediği durumlarda sabit kabul edilebilir bir değerdir.

Problemler

Sarkaç havadayken atmosferik ve mekanik sürüklenmeden etkilenir. drag. Ancak bu etkilerin telafi edilebileceği biliniyor. Atmosferik sürüklenme sıcaklık, nem oranı, havanın yogunluğu ve barometrik basınçtan etkilenebilir. Kesin zamanlamanın kullanılabilmesi için atmosferik gözlemelerle geliştirilmiş sarkaç odanın sıcaklık ve tahliyesinin kontrol altında tutulması gerekir.Yüksek dönme momenti atalet hakkında onun dönüşünü, her ikisi de yavaş salınım üretir, biraz daha hızlı olan sarkaç atmosferik sürüklenmeden daha az etkilenecektir.

Basit sarkaç günün her saatlerinde ortam(oda)sıcaklığından etkilenir,Sarkacı tutan malzemede ısıl gelişmeden etkilenir dolayısıyla sarkaca da etki eder. Bu değişiklik bazen minimize edilebilirkensarkaç için özel olarak kullanılan malzemeler çubuktaki küçük bir değişiklik sıcaklıkla birlikte daha karmaşık bir hal alır [ızgara Sarkacı], Bazen görünüşte Banjo benzeyen sarkaca Banjo Sarkacı denir.

Diğer uygulamalar

Schuler Ayarlaması Leon Foucault Sarkacı

Periyot hesabı

Bir sarkaçta salınım periyodu şöyle hesaplanır.

Bu ilişkide T periyot, L ip uzunluğu, radyan cinsinden salınımın maksimum açısı ve g de kütleçekimi ivmesidir. Ancak görüldüğü gibi küçük açılar için parantez içindeki ifade 1 e çok yakındır. Bu sebepten küçük açılar için;

Notlar

Konuyla ilgili yayınlar

  • Michael R. Matthews, Arthur Stinner, Colin F. Gauld. The Pendulum: Scientific, Historical, Philosophical and Educational Perspectives. Springer, 2005.
  • Michael R. Matthews, Colin Gauld and Arthur Stinner. The Pendulum: Its Place in Science, Culture and Pedagogy. Science & Education, 2005, 13, 261-277.
  • Morton, W. Scott and Charlton M. Lewis (2005). China: Its History and Culture. New York: McGraw-Hill, Inc.
  • Needham, Joseph (1986). Science and Civilization in China: Volume 3, Mathematics and the Sciences of the Heavens and the Earth. Taipei: Caves Books, Ltd.

Dış bağlantılar

İlgili Araştırma Makaleleri

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Yörünge</span> bir gökcisminin bir diğerinin kütleçekimi etkisi altında izlediği yola yörünge adı verilir

Gök mekaniğinde yörünge veya yörünge hareketi, bir gezegenin yıldız etrafındaki veya bir doğal uydunun gezegen etrafındaki veya bir gezegen, doğal uydu, asteroit veya lagrange noktası gibi uzaydaki bir nesne veya konum etrafındaki yapay uydunun izlediği kavisli bir yoldur. Yörünge, düzenli olarak tekrar eden bir yolu tanımlamakla birlikte, tekrar etmeyen bir yolu da ifade edebilir. Gezegenler ve uydular Kepler'in gezegensel hareket yasalarında tanımlandığı gibi, kütle merkezi elips biçiminde izledikleri yolun odak noktasında olacak şekilde yaklaşık olarak eliptik yörüngeleri takip ederler.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Foucault sarkacı</span>

Foucault sarkacı, adını Fransız fizikçi Léon Foucault'dan alan, ilk defa deneysel olarak Dünya'nın kendi ekseni çevresinde döndüğünü kanıtlayan sarkaç düzeneği.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Mutlak sıcaklık</span> mutlak sıcaklık ölçüsü

büyüklüğünün veya mutlak sıcaklık ya da termodinamik sıcaklık olarak tanımlanan büyüklüğünün iki önemli fiziksel sonucu vardır.

<span class="mw-page-title-main">Euler spirali</span> düzlemsel eğri

Euler spirali, eğimi eğrinin uzunluğuyla doğrusal olarak degişen bir eğridir. Euler spiralleri yaygın olarak spiros, clothoids veya Cornu spiralleri olarak da adlandırılır. Euler spirallerinin kırınım hesaplamalarında uygulamaları vardır. Genellikle demiryolu ve karayolu mühendisliklerinde teğet eğrisi ve dairesel eğri arasındaki geometriyi bağdaştırmaya ve aktarmaya yarayan geçiş eğrisi olarak kullanılır. Teğet eğrisi ve dairesel eğri arasındaki geçiş eğrisinin eğimindeki lineer değişim prensibi Euler spiralinin geometrisini belirler:

<span class="mw-page-title-main">Eğimli viraj</span>

Eğimli viraj, eğimi sıfırdan büyük olan yollardaki virajlardır. Bu virajlar, yolların "enkesit" çizimlerinde gösterilmektedir.

Yay sarkacı, serbest durumda bulunan esnek yayın ucuna G ağırlıklı cisim asıldığında oluşan sisteme denir. Sönümlenmeyen yay sarkacı, basit harmonik hareket yapar. Sadece yatay düzlemde olur.

<span class="mw-page-title-main">Basit sarkaç</span>

Basit sarkaç, serbest durumda bulunan ipin ucuna G ağırlıklı cisim asıldığında oluşan sisteme denir. Sönümlenmeyen basit sarkaç, basit harmonik hareket yapar.

<span class="mw-page-title-main">Atış hareketi</span>

Atış hareketi, Dünya yüzeyine yakın yerlerde; düşen, fırlatılan cisimlerin yaptığı harekettir. Bu harekette cismin ivmesi sabittir ve yerçekimi ivmesine eşittir.

<span class="mw-page-title-main">Işıktan hızlı hareket</span>

Astronomide, ışıktan hızlı hareket bazı radyo galaksilerin, kuasarların ve yakın zamanda bazı galaktik kaynaklarda denilen mikrokuasarlarda görülen görünüşte ışıktan daha hızlı hareket olduğudur Bu kaynakların hepsi yüksek hızlarda kütlesinin fırlamasından sorumlu bir kara delik içerdiği düşünülmektedir.

Fizikte, dairesel hareket bir nesnenin dairesel bir yörünge boyunca bir rotasyon ya da çemberin çevresinde yaptığı harekettir. Rotasyonun sürekli açısal değeriyle birlikte düzgün ya da değişen rotasyon değeriyle düzensiz olabilir. 3 boyutlu bir cismin sabit ekseni etrafındaki rotasyon parçalarının dairesel hareketini içerir. Hareketin denkliği bir cisim kütlesinin merkezini tanımlar.

Matematiksel fizikte, hareket denklemleri, fiziksel sistemin hareket sürecindeki davranışını, zamanın bir fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemleri, fiziksel sistemin davranışını devinimsel değişkenler üzerinde tanımlanmış bir matematiksel fonksiyon takımı olarak izah eder. Bu değişkenler genellikle uzay koordinatları ve zamandan ibarettir, ama gerektiğinde momentum bileşenleri de kullanılır. En yaygın değişken seçeneği, fiziksel sistemin özelliklerini uygun şekilde tanımlayan değişkenlerden oluşan genelleştirilmiş koordinatlardır. Klasik mekanikte bu fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte eğilmiş uzay üzerindeki fonksiyon daha uygundur. Eğer sistemin dinamikleri biliniyor ise, bu fonksiyonları tanımlayan denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

Paramanyetik bir malzemede, malzemenin mıknatıslanması genel olarak uygulanan manyetik alanla orantılıdır. Fakat eğer malzeme ısıtılırsa, bu oran düşer: Belirli bir sıcaklığa kadar, mıknatıslanma sıcaklıkla ters orantılıdır. Bu kavram “Curie Yasası” tarafından kapsanmaktadır:

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

<span class="mw-page-title-main">Yörünge mekaniği</span>

Yörünge mekaniği veya astrodinamik, roketler ve diğer uzay araçlarının hareketini ilgilendiren pratik problemlere, balistik ve gök mekaniğinin uygulamasıdır. Bu nesnelerin hareketi genellikle Newton'un hareket kanunları ve Newton'un evrensel çekim yasası ile hesaplanır. Bu, uzay görevi tasarımı ve denetimi altında olan bir çekirdek disiplindir. Gök mekaniği; daha genel olarak yıldız sistemleri, gezegenler, uydular ve kuyruklu yıldızlar gibi kütle çekimi etkisinde bulunan yörünge sistemleri için geçerlidir. Yörünge mekaniği; uzay araçlarının yörüngelerine ait yörünge manevraları, yörünge düzlemi değişiklikleri ve gezegenler arası transferler gibi kavramlara odaklanır ve itici manevralar sonuçlarını tahmin etmek için görev planlamacıları tarafından kullanılır. Genel görelilik teorisi, yörüngeleri hesaplamak için Newton yasalarından daha kesin bir teoridir ve doğru hesaplar yapmak ya da yüksek yerçekimini ihtiva eden durumlar söz konusu olduğunda bazen gereklidir.

<span class="mw-page-title-main">Elektrozayıf etkileşim</span>

Parçacık fiziğinde elektrozayıf etkileşim, doğanın bilinen iki veya dört temel etkileşiminin birleşimin bir tanımıdır: elektromanyetizm ve zayıf etkileşim. Her gün düşük enerjilerde, bu iki kuvvet çok farklı oluşsa da, teori modelleri aynı kuvvetin iki farklı etkisi gibidir. Yukarıdaki birleştirme enerjisi, yaklaşık 100 GeV, tek bir elektrozayıf kuvvet oluşturabilir. Bu yüzden, eğer evren yeterince sıcaksa (Big Bang'den kısa bir sonra olan bir sıcaklık ortalama 1015 K), elektromanyetik kuvvet ve zayıf kuvvet birleşmiş bir elektrozayıf kuvvete dönüşür. Elektrozayıf dönem boyunca, zayıf kuvvet güçlü kuvvetten ayrılır. Kuark dönem boyunca, elektrozayıf kuvvet elektromanyetik ve zayıf kuvvetten ayrılır.

Richardson sayısı (Ri), Lewis Fry Richardson (1881–1953) adını taşıyan boyansi teriminin akış kayma gerilmesi terimine oranını ifade eden bir boyutsuz sayı: