İçeriğe atla

Sallen-Key filtresi

Sallen–Key süzgeci (filtresi), ikinci dereceden etkin süzgeçlerin tasarımında kullanılan ve kolayca tasarlanabilen bir elektronik süzgeçtir.

Yapı

Sallen–Key süzgecinin yapısı.

Birim kazançlı genel Sallen-Key süzgecinin yapısı, yandaki devre şemasında gösterilmiştir. Anlatım içerisinde karşılaşılan denklemler ideal işlemsel yükselteç varsayımı doğrultusunda çıkarılacaktır.

İşlemsel yükseltece negatif geribesleme uygulandığı için, v+ ve v- düğümleri birbirine uygunluk sağlamak zorundadır (bk. v+ = v-, Nullator-Narator modeli). Ancak gerilimim fazını eviren v- ucu, doğrudan vçıkış ucuna bağlıdır; bu sebeple

olur. Kirchoff'un akım yasası (KAY), vx düğümüne uygulandığında,

olur. (1) ve (2) denklemleri birleştirildiğinde,

olur. (1) numaralı denklem ve KAY, işlemsel kuvvetlendiricinin faz evirmeyen düğümüne v+ uygulandığında,

elde edilir. Yani,

bulunur. Denklem (2) ve (3)'ün birleşimi aşağıdaki sonucu vermektedir:

Denklem (4), yapının aşağıda yazılı transfer fonksiyonunu vermektedir:

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kısmi türev</span>

Kısmi türev çok değişkenli bir işlevin(fonksiyon), sadece ilgili değişkeni sabit değilken alınan türevdir. Bu tarz türevleri içeren denklemlere kısmi diferansiyel denklem denir.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

<span class="mw-page-title-main">İkinci dereceden denklemler</span>

İkinci dereceden denklemler, derecesi 2 olan polinomların oluşturduğu denklemlerdir. Bu denklemlerin genel formu aşağıdaki gibidir

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Çevrel çember</span>

Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

Compton dalgaboyu bir parçacığın kuantum mekaniği özelliğidir. Compton dalgaboyu Arthur Compton tarafından elektronların foton saçılması olayı izah edilirken gösterilmiştir. Bir parçacığın Compton dalga boyu; enerjisi parçacığın durgun kütle enerjisine eşit olan fotonun dalgaboyuna eşittir. Parçacığın Compton dalgaboyu ( λ) şuna eşittir:

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

Kuantum tüneli, parçacığın bariyer boyunca olan kuantum mekaniğini ifade eder. Bu, Güneş gibi yıldızlar dizisinde meydana gelen nükleer birleşmeler gibi birçok fiziksel olayda önemli bir rol oynar. Tünel diyotu, kuantum bilgisayarı ve taramalı tünelleme mikroskobu gibi modern araçlarda önemli uygulamaları vardır. Fiziksel olay olarak etkisi ve kabul görülürlüğü 20. yüzyılın başlarında ve ortalarına doğru geldiği tahmin ediliyor.

Matematiksel fizikte, hareket denklemleri, fiziksel sistemin hareket sürecindeki davranışını, zamanın bir fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemleri, fiziksel sistemin davranışını devinimsel değişkenler üzerinde tanımlanmış bir matematiksel fonksiyon takımı olarak izah eder. Bu değişkenler genellikle uzay koordinatları ve zamandan ibarettir, ama gerektiğinde momentum bileşenleri de kullanılır. En yaygın değişken seçeneği, fiziksel sistemin özelliklerini uygun şekilde tanımlayan değişkenlerden oluşan genelleştirilmiş koordinatlardır. Klasik mekanikte bu fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte eğilmiş uzay üzerindeki fonksiyon daha uygundur. Eğer sistemin dinamikleri biliniyor ise, bu fonksiyonları tanımlayan denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Maxwell ilişkileri</span>

Maxwell ilişkileri İkinci dereceden türevlerin simetri ve termodinamik potansiyellerin tanımlarından türetilebilen termodinamik denklemler dizisidir. Bu ilişkiler 19.yüzyıl fizikçisi James Clerk Maxwell tarafından adlandırılmıştır.

Hamilton mekaniği klasik mekaniğin tekrar formüle edilmesiyle geliştirilmiş ve Hamilton olmayan klasik mekanik ile aynı sonuçları öngörmüş bir teoridir. Teoriye daha soyut bir bakış açısı kazandıran Hamilton mekaniği klasik mekaniğe kıyasla farklı bir matematiksel formülasyon kullanmaktadır. Tarihi açıdan önemli bir çalışma olan Hamilton mekaniği ileriki yıllarda istatistiksel mekanik ve kuantum mekaniği konularının da geliştirilmesine önemli katkılarda bulunmuştur.

Elektrokimyada Nernst denklemi, bir elektrokimyasal reaksiyonun indirgenme potansiyelini ; indirgeme ve oksidasyona uğrayan kimyasal türlerin standart elektrot potansiyeli, sıcaklığı ve aktiflikleri ile ilişkilendiren bir denklemdir. Denklemi formüle eden Alman fiziksel kimyacı Walther Nernst'in adını almıştır.

Daha yaygın ismiyle Goldman denklemi olarak bilinen Goldman-Hodgkin-Katzl denklemi, hücre zarıfizyolojisinde, hücre zarından geçen tüm iyonları hesaba katarak hücre zarındaki ters potansiyeli belirlemek için kullanılır.

Numerov'un yöntemi, birinci mertebeden terimin görünmediği ikinci mertebeden adi diferansiyel denklemleri çözmek için sayısal bir yöntemdir. Dördüncü dereceden doğrusal çok adımlı bir yöntemdir. Yöntem örtüktür, ancak diferansiyel denklem lineer ise açık hâle getirilebilir.