İçeriğe atla

Sabatier Reaksiyonu

1910'larda Fransız kimyacı Paul Sabatier'in bulduğu Sabatier Reaksiyonu veya Sabatier İşlemi Hidrojen ile Karbondioksit'in yüksek sıcaklık (ideal olarak 300 - 400 °C) ve basınç altında Nikel katalizör ile reaksiyona girerek Metan ve Su oluşturmasına denir. Alternatif olarak Alümina (Alüminyum oksit) üzeri Rutenyum daha etkili bir katalizördür. Ekzotermik reaksiyonu aşağıdaki şekilde tanımlanır.

CO2 + 4 H2 → CH4 + 2 H2O + Enerji
∆H = −165.0 kJ/mol (reaksiyonu başlatmak için gerekli olan enerji/ısı)

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Nükleer füzyon</span> Hafif çekirdeklerin daha ağır bir çekirdek oluşturmak için birleşmesi

Nükleer füzyon, nükleer kaynaşma ya da kısaca füzyon; iki hafif elementin nükleer reaksiyonlar sonucu birleşerek daha ağır bir element oluşturmasıdır. Çekirdek tepkimesi olarak da bilinen bu tepkimenin sonucunda çok büyük miktarda enerji açığa çıkar.

<span class="mw-page-title-main">Kimyasal reaksiyon</span> iki veya daha fazla maddenin birbiri ile etkileşmesi sonucu kendi özelliklerini kaybederek yeni özellikte maddeler oluşturması

Kimyasal tepkime ya da kimyasal reaksiyon, iki veya daha fazla maddenin birbiri ile etkileşmesi sonucu kendi özelliklerini kaybederek yeni özellikte maddeler oluşturmasıdır. Kimyasal olay ve kimyasal değişme kavramlarıyla eşanlamlıdır. Kimyasal reaksiyonların test edilmesi için Periyodik tablo metalleri ile aside koyarak yapılabilir.

<span class="mw-page-title-main">Alken</span>

Alkenler yapılarında en az bir tane karbon-karbon (C=C) çift bağı içeren organik bileşiklerdir. Alkenlerin yapısında karbon-karbon çift bağı bulunduğundan ve bu karbonların yapabileceği en fazla hidrojenle bağ yapmamış olduğundan alkenler doymamış bileşikler kategorisine girerler. Alkenlerin yapısında sadece bir karbon-karbon çift bağının bulunması durumunda homolog seriler oluşturur. Bu homolog serilerin genel formülü CnH2n şeklindedir. Burada n-in en az 2 olma şartı vardır. Aşağıda en basit alken olan eten, yaygın ismiyle etilenin, çeşitli modellemelerle çizilmiş şekillerinin yanı sıra alkenlerin çeşitli şekillerdeki yazılış şekilleri de bulunmaktadır.

Katalizör, bir kimyasal tepkimenin aktivasyon enerjisini düşürerek tepkime hızını artıran ve tepkime sonrasında kimyasal yapısında bir değişiklik meydana gelmeyen maddelerdir. Katalizörün tepkime üzerinde yaptığı bu değişikliğe kataliz denir. Kataliz olayı, katalizör ve reaktantlar aynı fazda ise homojen kataliz, katalizör ve reaktantlar farklı fazda olduğunda ise heterojen kataliz olarak adlandırılır. Heterojen kataliz mekanizmaları hâlâ tam olarak aydınlatılmış değildir.

<span class="mw-page-title-main">İyot</span> sembolü I ve atom numarası 53 olan kimyasal element

İyot, sembolü I, atom numarası 53 olan bir elementtir. Kimyasal olarak iyot halojenlerin en az reaktif olanı, astatin'den sonra en elektropozitif olanıdır. İyot başlıca tıpta, fotoğrafçılıkta ve boya imalatında kullanılır. Çoğu canlının eser miktarda iyota gereksinimi vardır.

<span class="mw-page-title-main">Nükleer reaksiyon</span>

Nükleer reaksiyon veya çekirdek tepkimesi, iki atom çekirdeğinin veya bir atom çekirdeğiyle atom dışından bir atomaltı parçacığın çarpışarak bir veya daha fazla yeni nüklide dönüşmeleri. Bu gibi reaksiyonlarda yer alan atomaltı parçacıklar proton, nötron veya yüksek enerjili elektron olabilir. Kimyasal reaksiyondan farkı, kimyasal reaksiyonların atomların elektronları arasında gerçekleşmesidir. Çekirdek tepkimesi sonucunda eğer proton sayısı değişiyor ise farklı bir elemente ait bir tanecik oluşmuş olur. Bir reaksiyonun nükleer reaksiyon sayılabilmesi için en az bir nüklidin başka bir nüklide dönüşmesi gerekir; böyle bir dönüşüm gerçekleşmezse yaşanan çarpışma sürecine saçılma adı verilir. Spontane olarak gerçekleşen radyoaktif bozunma, nüklit değişimine yol açsa da nükleer reaksiyon olarak kabul edilmez.

Hidrojenasyon, bir kimyasal reaksiyon sınıfıdır ve organik bileşiklere hidrojen (H2) eklenmesi işlemidir. Hidrojenasyon, özellikle doymamış organik bileşikler (alkenler, alkinler, ketonlar ve nitriller ) için önemli bir reaksiyondur. Genellikle basınç altında katalizörler yardımı ile direkt hidrojen eklemesi ile gerçekleştirilir. Hidrojenasyon için en klasik örnek, alkenlerdeki doymamış karbon kimyasal bağına bir hidrojenin ekleyerek, alkeni alkana dönüştürmektir. İlaç ve petrokimya endüstrisinde çok değişik uygulamaları vardır. Bu kimyasal işlemin tersi dehidrojenasyondur. Alkenlere hidrojenin katılması sonucunda Alkanlar oluşur. Alkankar sadece karbon-karbon tekli bağlara sahiptirler. Bu tepkimede katalizör kullanıldığından katalitik hidrojenleme olarak da adlandırılır. Alkenlere hidrojen katılma tepkimeleri ekzotermik tepkimeler olup oda sıcaklığında katalizörsüz tepkime gerçekleşmez. Burada katalizör kullanılarak tepkimenin oda sıcaklığında gerçekleşmesi sağlanır. Yalnız katalizörün etkisi bununla sınırlı kalmıyor. Kullanılan katalizör elde edilecek olan ürünün cis-Alkan ya da trans-Alkan olmasını etkilemektedir. Eğer kullanılan katalizör heterojen bir katalizör ise, (bir parça nikel, platin, paladyum) yani çözelti içerisinde heterojen olarak karışıyorsa katılan her iki hidrojen atomu alkenin aynı tarafına eklenir ve böylece cis-Alkan oluşur. Şayet bu katalizör çözelti içerisinde homojen olarak yayılan bir katalkizörse bu seferde trans-Alkan oluşmuş olacak.

<span class="mw-page-title-main">KAO döngüsü</span>

KAO (CNO) Döngüsü (Karbon-Azot-Oksijen), yıldızlarda hidrojeni helyuma çevirmek için gerçekleşen iki çekirdeksel kaynaşma (füzyon) sürecinden biridir. Diğeri ise proton-proton (pp) zinciridir.

<span class="mw-page-title-main">Proton-proton zincirleme reaksiyonu</span> yıldızların hidrojeni helyuma dönüştürdüğü bilinen iki nükleer füzyon reaksiyonu setinden biri

proton-proton (pp) zincir reaksiyonu, yıldızların hidrojeni helyuma dönüştürdüğü bilinen iki nükleer füzyon reaksiyonu setinden biridir. Güneş kütlesine eşit veya daha az kütleli yıldızlarda egemendir. Bilinen diğer reaksiyon CNO döngüsüdür. CNO, daha çok güneş kütlesinin yaklaşık 1.3 katından daha büyük kütlelere sahip yıldızlarda hakim olabilen reaksiyonlardır.

<span class="mw-page-title-main">Yakıt</span> Daha sonra çıkacak enerjiyi depolayabilen materyal

Yakıt, fiziksel ve kimyasal yapısında bir değişim meydana geldiğinde ısı enerjisi açığa çıkaran her türlü maddenin genel adı.

<span class="mw-page-title-main">Yakıt hücresi</span>

Alışıla gelmiş elektrik üretim sistemleri yakıtın içindeki enerjiyi elektriğe dönüştürmek için ilk olarak yanma reaksiyonunu kullanır. Yanma reaksiyonunun verimli bir şekilde gerçekleşmesi için yakıtın ve oksitleyicinin (oksijen) tam olarak karışması gerekir. Bundan sonra elektrik enerjisi üretilene kadar bir dizi ara işlem gereklidir. Her ara işlem enerji kaybına yol açar dolayısıyla verimi düşürür.

<span class="mw-page-title-main">Paul Sabatier</span> Fransız kimyager (1854 – 1941)

Paul Sabatier, Fransız kimyager.

İnert madde terimi kimyada, kimyasal olarak aktif olmayan maddeleri nitelemek için kullanılır. Örneğin; soy gazlar, yani periyodik tablonun 8A grubunda yer alan elementler, hiçbir madde ile reaksiyon vermediklerinden dolayı inert maddeler olarak nitelendirilirler. İnert olan maddelerin hiçbir reaksiyona girmemelerinin nedeni de, son orbitallerinin tamamiyle elektron ile dolu olması olarak gösterilmektedir. Bu doluluk sonucunda da bu tür maddeler, elektron kaybetmek veya kazanmak istemezler ve bunun sonucunda da yanma, birleşme gibi hiçbir şekilde kimyasal tepkimelere girmezler.

Aktivasyon enerjisi, kimyasal bir tepkimenin gerçekleşebilmesi için aşılması gereken enerji değeri. Terim ilk kez 1889 yılında, Svante Arrhenius tarafından kullanılmıştır.

<span class="mw-page-title-main">Reaktif</span> belli bir bileşik ile karakteristik bir reaksiyona girebilen, reaksiyondan ürün üretmeye yarayan bir bileşik

Kimyada ayıraç, reaktif, reajan veya reaktant belli bir bileşik ile karakteristik bir reaksiyona girebilen ve bu sayede o bileşiğin varlığını hatta miktarını belirlemeye yarayan ve reaksiyondan ürün üretmeye yarayan bir bileşiktir. Analitik ayıraçlarin örnekleri arasında Fehling ayıracı ve Tollens ayıracı sayılabilir. Organik kimyada ayıraçlar birer bileşik veya karışım olabilirler, organik bir reaktanın değişime uğramasını neden olurlar. Organik ayıraçlara örnek olarak Collins ayıracı, Fenton ayıracı ve Grignard ayıracı gösterilebilirken katalizörler ayraç değildir.

<span class="mw-page-title-main">Enantiyoselektif sentez</span>

Enantiyoselektif sentez ya da asimetrik sentez, bir kimyasal sentez şeklidir. IUPAC, bir veya daha fazla yeni kiralite elementinin bir substrat molekülünde oluşturulduğu ve stereoizomerik ürünleri eşit olmayan miktarlarda üreten kimyasal reaksiyon olarak tanımlanır.

Reaksiyon kinetiği olarak da bilinen kimyasal kinetik, kimyasal reaksiyonların hızlarını ve mekanizmalarını araştırmakla ilgilenen bir fiziksel kimya dalıdır. Bir sürecin gerçekleştiği yön ile ilgilenen ancak gerçekleşme hızları hakkında bir bilgi vermeyen termodinamik ile karıştırılmamalıdır. Kimyasal kinetik, deneysel koşulların kimyasal reaksiyonların hızı üzerine etkilerini, reaksiyon mekanizmaları ile geçiş hâllerinin verim bilgilerini ve kimyasal reaksiyonların karakteristiklerini tanımlayan matematiksel modellerin çıkarılmasını kapsayan bir bilim alanıdır.

<span class="mw-page-title-main">Faz yüzey bilimi</span>

Faz yüzey bilimi, katı - sıvı arayüzleri, katı - gaz arayüzleri, katı - vakum arayüzleri ve sıvı - gaz arayüzleri dahil olmak üzere iki fazın arayüzünde meydana gelen fiziksel ve kimyasal olayların incelenmesidir. Yüzey kimyası ve yüzey fiziği alanlarını içerir. İlgili bazı pratik uygulamalar yüzey mühendisliği olarak sınıflandırılmaktadır. Bilim heterojen kataliz, yarı iletken cihaz üretimi, yakıt hücreleri, kendi kendine monte edilen tek tabakalar ve yapıştırıcılar gibi kavramları kapsar. Faz yüzey bilimi arayüz ve kolloid bilimi ile yakından ilgilidir. Arayüzey kimyası ve fizik her ikisi için de ortak konulardır. Yöntemler farklı. Buna ek olarak, arayüz ve kolloid bilimleri, arayüzlerin özelliklerinden dolayı heterojen sistemlerde ortaya çıkan makroskopik olayları inceler.

<span class="mw-page-title-main">Kimyasal reaksiyon mühendisliği</span>

Kimyasal reaksiyon mühendisliği, kimya mühendisliği ve endüstriyel kimya alanında kullanılan kimyasal reaktörler ve tepkime kinetiği ile ilgilenen bir uzmanlık alanıdır. Tepkime kinetiği ve reaktör tasarımını birleştiren kimyasal reaksiyon mühendisliği, birçok endüstriyel kimyasalın üretimi için gerekli temel bir unsurdur. Kimyasal reaksiyon mühendisliği disiplininin günlük hayatta pek çok uygulama alanı bulunur. Kimyasal üretimi, ilaç üretimi ve atık arıtımı faaliyetlerinde reaksiyon mühendisliği kullanılır. Enzim kinetiği, farmakokinetik, ısı etkileri, ani reaksiyonlar ve tesis güvenliği gibi konularda da kimyasal reaksiyon mühendisliği disiplininden faydalanılır. Kimyasal reaksiyon mühendisliği ilk kez 1940'lar ve 1950'lerde hızla büyüyen kimya ve petrokimya sanayisinin ihtiyaçlarını karşılamak için ortaya çıkmış ve günümüze kadar plastiklerin, kimyasalların, ilaçların ve diğer pek çok maddenin üretim süreçlerinde kullanılan bir yöntem olmuştur.

<span class="mw-page-title-main">Kimyasal reaktör</span> içerisinde kimyasal reaksiyon gerçekleştirmek için tasarlanmış tanklar

Kimyasal reaktörler bir kimyasal reaksiyonun gerçekleştirildiği proses ekipmanlarıdır. Kimya mühendisliğinde proses tasarımı ve analizinde sık kullanılan klasik bir ünite prosesidir. Bir kimyasal reaktörün tasarımı, kimya mühendisliğinin birden fazla unsurunun kullanılmasını gerektirir. Reaktörler proseste ham maddelerin ürünlere dönüştüğü oldukça temel bir ekipman olduğundan proses tasarımı açısından büyük önem arz eder. Kimya mühendisleri bir reaksiyonun net bugünkü değerini en üst düzeye çıkarmak için reaktörler tasarlar. Tasarımcılar satın alma ve işletme maliyetini en düşük seviyelerde tutarken bir yandan da üretilen ürün miktarını en yüksek seviyede tutmak için reaksiyonun ürünler yönünde mümkün olan en yüksek verimle devamlılığını sağlarlar. Enerji girişi, enerji çıkışı, ham madde maliyetleri, işçilik vb. işletme giderlerine örnek olarak verilebilir. Isıtma, soğutma, basıncı artırmak için pompalama, sürtünmeden kaynaklı basınç düşüşü ve çöktürme gibi durumlar da enerji değişimlerine birer örnektir.