İçeriğe atla

Sıralı mantık

Dijital Devre teorisinde, “Sıralı Mantık” devrenin çıktılarının sadece şu anki durumuna değil, aynı zamanda geçmişteki Dijital Sinyal girdilerine de bağlı olduğu mantık devresi yapısıdır.[1][2][3][4] Sıralı mantık devreleri kombinasyonel mantık devrelerinin aksine sadece şu anki inputlara bağlı değildir. Şöyle ki, sıralı mantık devrelerinin durum hafızaları varken, kombinasyonel mantık devrelerinin yoktur. Diğer bir deyişle, sıralı mantık devreleri hafıza elemanı taşıyan kombinasyonel devrelerdir.

Sıralı mantık, hafıza elemanları vb. güncel elektroniğin temel inşa bloğu olan sonlu durum makinelerinin dizaynında kullanılır. Aslında tüm kullanımda olan dijital cihazlar, kombinasyonel ve sıralı devrelerin birleşiminden oluşmaktadır.

Tanıdık bir sıralı mantık örneği olarak, kanal numarası artır/azalt fonksiyonuna sahip bir televizyonu gösterebiliriz.[1] Yukarı tuşuna basmak, televizyonun o an taşıdığı değere değil de sırada bir sonraki kanala geçmesini sağlar. 5.kanaldan 6 ya bu şekilde geçilebilir, fakat 8 deyseniz 9 sonucunu elde edersiniz. Bu çok basit gözüken örneğin can alıcı noktası televizyonun sinyal gelmedikçe bulunduğu kanalı muhafaza edebilmesidir ki şu anki durumu da yine önceden basılmış olan butonlara bağlıdır.[1] Televizyon şu an bulunduğu kanalı, durumunun bir parçası olarak muhafaza edebilmektedir. Bir butona basıldığında ise, şu anki durumuna ve gelen girdiye (aşağı/yukarı) bağlı olarak bir sonraki kanalı hesap edip, daha sonra bu değeri yine saklamaktadır.

Dijital sıralı devreler senkron ve asenkron olmak üzere iki tipe sahiptirler. Senkron dijital devrelerde, hafıza elemanının durumu, sadece saat girdisinin belirli zamanlarında değiştirilebilirler. Asenkron tipe ise inputun değişimine bağlı olarak anlık durum değişimleri yaşanmaktadır. Örneğin sırasıyla sayı sayan bir devre, her bir saat tikinde değerini senkron bir biçimde artırırken, istendiğinde onun durumunu sıfırlayan kontrol pini bunu asenkron biçimde yapar.

Senkron sıralı mantık

Günümüzde kullandığımız neredeyse tüm mantık devreleri “saatli” ya da senkron devrelerdir. Senkron bir devrede, “saat” ismi verilen, arka arkaya atmalar üreten bir elektronik osilatör bulunur. Bu atmaların her biri devre üzerindeki tüm hafıza elemanlarına ulaştırılır. Sıralı bir devre içerisinde kullanılan en basit hafıza elemanı Flip-Flop’tur ki kendisi sadece 1 bit lik bir very muhafaza edebilir. Devre içerisindeki herhangi bir flip-flop’un değeri sadece kendisine ulaştırılmış olan saat atmalarının yükselme veya alçalma anında değiştirilebilir. Bu sebeple tüm devre aynı anda başlar ve aynı anda durum değiştirir. Buna devrenin senkronize olması denir.

Devre üzerinde bulunan hafıza elemanlarının(Flip-Flop) verilen herhangi bir andaki çıktılarına, devrenin durumu denir. Senkron bir devrede, devrenin tüm durumu sadece saat atmalarında değiştirilebilir. Her bir atmada, devrenin şu anki durumu gelen girdiye göre kombinasyonel bir devre vasıtasıyla yeniden hesaplanır ve çıktı oluştuktan sonra devre durumunu bir sonraki atmaya kadar koruma eğilimi gösterir.

Senkron bir mantık devresinin en önemli avantajı sade olmasıdır. Gelen girdiden bağımsız olarak tüm devrenin değer alıp sonuç verme süresi bellidir. Aradaki ufak gecikmeye “İlerleme gecikmesi” denilmektedir. Arka arkaya gelen iki atmanın süresinin bu ilerleme gecikmesinden fazla olması devrenin düzgün çalışabilmesi için hayati öneme sahiptir. Eğer aralıklar yeterince uzun olursa, devre gelen girdiye bağlı olarak sonucunu hesaplayıp bir sonraki saat atmasına kadar durumunu muhafaza edebilir. Çok küçük diğer birkaç sorun dışında, bu koşulun sağlanması devrenin istenen bir biçimde düzgün çalışacağını garanti etmektedir. İlerleme gecikmesi bir devrenin en yüksek çalışma hızını belirleyen unsurdur. Senkron devrelerin 2 önemli dezavantajları bulunmaktadır:

  • Elde edilebilecek en yüksek saat hızı devre içerisindeki en yavaş mantık yolu tarafından belirlenir. Bu yola “Kritik yol” denir. Her mantıksal hesaplamada, en basitinden en karmaşığına kadar, tüm işlemlerin tek bir saat atmasında tamamlanması gerekir. Diğer bir deyişle işlemleri çok hızlı tamamlayabilen devreler bir sonraki saat atmasına kadar bekleme durumunda kalırlar. Bu sebeple senkron bir devre asenkron olana kıyasla daha yavaş olabilir. Senkron devreleri biraz daha hızlı çalıştırmanın yolu, karmaşık ve çok vakit alan işlemlerin daha basit birimlere bölünmesinden geçer. Bu tarz yapılan işlemlere küme komut işleme denir. Bu metot birçok mikroişlemci tarafından benimsenmiş bir metoddur ve modern işlemcilerin daha performanslı çalışmasını sağlar.
  • Saat sinyali devre içerisindeki her bir flipo flopa aktarılmak zorundadır. Saat sinyali de genellikle yüksek frekansa sahip olduğundan, saat sinyalinin devre üzerindeki iletimi oldukça uzun yol üzerinden çok fazla güç harcanmasına sebep olmaktadır ki bu da ısı demektir. Flip-Flop’lar devre içerisinde durumlarını korumak konusunda çok az bir güç tüketmelerine rağmen saat sinyalinin iletimi sebebiyle toplam güç tüketimi ciddi biçimde artar ve artık bir sıcaklık oluşur. Bu durum özellikle sınırlı pil ile çalışan mobil cihazlarda ciddi bir sıkıntı teşkil eder, cihazın çalışmadığı anlarda bile güç tüketmesi demektir.

Asenkron sıralı mantık

Asenkron sıralı devreler, belirli bir saat sinyali tarafından kontrol edilmezler, devrenin durumu anlık olarak girdinin değişmesiyle beraber değişir. Asenkron devrelerin senkronlara oranla daha hızlı çalıştığı bilinmektedir çünkü durumun değişmesi için bir sonraki saat atmasını beklemesine gerek yoktur. Devrenin potansiyel hızı, devre içerisinde kullanılan mantık kapılarının ilerleme gecikmeleriyle sınırlıdır.

Fakat, asenkron devreler, senkronlara oranla dizaynı ve kontrol etmesi daha zordur. Temel problem dijital hafıza elemanlarının gelen girdi sırasına hassas olmalarından kaynaklanmaktadır, eğer iki girdi mantık kapısına neredeyse aynı anda ulaşırlarsa, devrenin vereceği çıktıyı tahmin etmek zorlaşmaktadır, daha erken gelen sinyal devrenin durumunu belirlemektedir. Bu sebeple devredeki sıcaklık vb. dış etmenlerden kaynaklanan gecikmeler devrenin istenmeyen bir duruma girmesine sebep olabilir. Bu duruma “Yarış Şartı” denmektedir (önce gelen ne derse o gibi de söylenebilir). Bu duruma senkron devrelerde çok rastlanmaz çünkü bir sonraki saat atmasına kadar devrenin istenen sinyallere ulaşacağı öngörüsünde bulunulmuştur. Asenkron devreler, bu sebeple genellikle zamanlama konusunda tüm devre dizaynında sorun çıkaran elemanlardır çünkü çıktı bir saat sinyaliyle kontrol edilmemektedir.

Asenkron devreler genellikle çok az kısımda kullanılırlar, mikroişlemciler ve dijital sinyal işlemcileri gibi diğer durumlar için yüksek hızlı senkron devreler tercih edilmektedir. Asenkron devrelerin dizaynı ve analizi için senkron devrelerden daha farklı matematik modeller ve teknikler geliştirilmektedir. Şu sıralar bu konu aktif bir araştırma konusudur.

Ayrıca bakınız

  • Kombinasyonel Mantık
  • Senkron Devre
  • Asenkron Devre
  • Mantık Dizaynı
  • Asenkron Mantık ve Cebir
  • İşleme Özel Entegre Devre Tasarımı
  • FPGA

Kaynakça

  1. ^ a b c Vai, M. Michael (2000). VLSI Design. CRC Press. s. 147. ISBN 0849318769. 24 Mart 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Mayıs 2015. 
  2. ^ Cavanagh, Joseph (2006). Sequential Logic: Analysis and Synthesis. CRC Press. ss. ix. ISBN 0849375649. 4 Haziran 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Mayıs 2015. 
  3. ^ Lipiansky, Ed (2012). Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers. John Wiley and Sons. s. 8.39. ISBN 1118414543. 22 Nisan 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Mayıs 2015. 
  4. ^ Dally, William J.; Harting, R. Curtis (2012). Digital Design: A Systems Approach. Cambridge University Press. s. 291. ISBN 0521199506. 3 Haziran 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Mayıs 2015. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">RAM</span> herhangi bir sırada okunabilen ve değiştirilebilen bir tür geçici veri deposu

Rastgele erişimli hafıza veya rastgele erişimli bellek mikroişlemcili sistemlerde kullanılan, genellikle çalışma verileriyle birlikte makine kodunu depolamak için kullanılan herhangi bir sırada okunabilen ve değiştirilebilen bir tür geçici veri deposudur. Buna karşın diğer hafıza aygıtları saklama ortamındaki verilere önceden belirlenen bir sırada ulaşabilmektedir, çünkü mekanik tasarımları ancak buna izin vermektedir.

<span class="mw-page-title-main">VoIP</span>

VoIP, IP üzerinden ses, video veya mesaj gönderilmesidir. İnternet veya bilgisayar ağları üzerinden çalıştığı için genellikle daha ucuz, bazen bedavadır. Bu nedenle günümüzden en çok tercih edilen telekomünikasyon iletişim yönetimidir. Analog hatları VoIP'e dönüştürmek için VoIP Gateway cihazları kullanılır.

<span class="mw-page-title-main">Mikrodenetleyici</span>

Mikrodenetleyici bir VLSI entegre devre çipinde küçük bir bilgisayar'dır. Mikrodenetleyici, bellek ve programlanabilir giriş/çıkış çevre birimleri ile birlikte bir veya daha fazla CPU kapsar.

<span class="mw-page-title-main">Modem</span> cihazların internete girebilmesini sağlayan cihaz

Modem veya çevirge, tanım olarak "Modülator" ve "Demodülator" kelimelerinin birleşiminden üretilmiştir. Modem, bilgisayarların genel ağa bağlantısını sağlayan ve bir bilgisayarı uzak yerlerdeki bilgisayar(lara) bağlayan aygıttır. Modem, verileri ses sinyallerine ses sinyallerini verilere dönüştürerek verileri taşır. Geniş ağ kurmak için mutlaka bulunması gereken ağ elemanıdır.

<span class="mw-page-title-main">Merkezî işlem birimi</span> bir bilgisayar programının talimatlarını, talimatlar tarafından belirtilen temel aritmetik, mantıksal, kontrol ve giriş/çıkış (G/Ç) işlemlerini gerçekleştirerek yürüten ve diğer bileşenleri koordine eden bir bilgisayar içindeki elektro

Merkezî işlem birimi, dijital bilgisayarların veri işleyen ve yazılım komutlarını gerçekleştiren bölümüdür. Çalıştırılmakta olan yazılımın içinde bulunan komutları işler. Mikroişlemciler ise tek bir yonga içine yerleştirilmiş bir merkezî işlem birimidir. 1970'lerin ortasından itibaren gelişen mikroişlemciler ve bunların kullanımı, günümüzde MİB teriminin genel olarak mikroişlemciler yerine de kullanılması sonucunu doğurmuştur.

<span class="mw-page-title-main">Algı</span> Duyusal bilginin alınması, yorumlanması, seçilmesi ve düzenlenmesi

Algı, psikoloji ve bilişsel bilimlerde duyusal bilginin alınması, yorumlanması, seçilmesi ve düzenlenmesi anlamına gelir. Algı, duyu organlarının fiziksel uyarılmasıyla oluşan sinir sistemindeki sinyallerden oluşur. Örneğin, görme gözün retinasına düşen ışıkla, işitme kulağa gelen ses ile oluşur. Algı bu sinyallerin sadece pasif bir şekilde alınması değildir. Öğrenme, dikkat, hafıza ve beklenti ile şekillenebilir. Algı, bu "yukarıdan aşağıya etkileri" kapsadığı gibi duyusal girdinin "aşağıdan yukarıya" işlenmesini de içerir. "Aşağıdan yukarıya işlemler", basitçe, düşük seviye bilgi kullanılarak daha yüksek seviyede bilginin oluşturulmasıdır. Yukarıdan aşağıya işlemler ile kastedilen, kişinin kavram ve beklentilerinin algıyı etkilemesidir. Algılama, sinir sisteminin kompleks işlemlerine dayanır, ancak bilinçsel farkındalığın dışında gerçekleştiği için çoğu zaman kişilere zahmetsizce gerçekleşir gibi gelir.

1 bitlik hafızadır. Tetikleme darbesi ile tuttuğu değeri bırakır ve yeni gelen değeri tutmaya başlar.

i386

Intel 80386 veya i386, 80286'dan sonraki Intel mikroişlemcisi.

Telekomünikasyonda RS-232, DTE ile DCE arasındaki seri ikili tek sonlu veri iletimi ve sinyalleme için kullanılan seri iletişim standardının genel adıdır. Daha çok bilgisayardaki seri portlarda kullanılır. Bu standart, elektriksel karakteristikleri, sinyal zamanlamalarını, sinyal anlamlarını, konnektörlerin fiziksel büyüklükleri ve bacak çıkışlarını kapsamaktadır. Şu anki standart 1997'den beri kullanılmaktadır.

<span class="mw-page-title-main">Kesme (bilgisayar)</span>

İş kesme, bilgi işlemede donanımsal olarak olağanüstü durumu belirtmek için gönderilen asenkron sinyal veya yazılımda işletimde değişiklik olacağını göstermek için ihtiyaç duyulan senkronize olaydır.

Boru hattı yöntemi bilgisayar mimarisi ve diğer sayısal ürünlerin tasarımında başarımı artırmak için uygulanan bir yöntemdir. Komutları, boru hattı yöntemi ile işleyip daha kısa süre içinde bitmesini sağlar. Asıl amacı saat sıklığını artırarak başarımı artırmaktır. Farklı kaynakları aynı anda, farklı işler tarafından kullanarak çalışır.

<span class="mw-page-title-main">Sonlu durum makinesi</span>

Sonlu durum makinası ; sınırlı sayıda durumdan, durumlar arası geçişlerden ve eylemlerin birleşmesiyle oluşan davranışların bir modelidir.

<span class="mw-page-title-main">Flip flop</span>

Bir elektronik devreye çalışma gerilimi uygulandığı sürece durumunu ve buna bağlı olarak çıkışındaki değeri devamlı olarak koruyan multivibratör çeşidi Flip Flop (yaz-boz) olarak isimlendirilir. FF olarak sembolize edilir. Lojik kapılar ile oluşturduğumuz flip floplar lojik devrelerde en önemli bellek elemanlarıdır. FF'ler için çift kararlı multivibratör terimi de kullanılır. FF'lerin tetikleme girişine uygulanan kare veya dikdörtgen şeklindeki sinyaller, tetikleme sinyali/palsi olarak adlandırılır. FF devresi tetikleme sinyalinin pozitif kenarında tetikleniyorsa pozitif kenar tetikleme, negatif kenarından tetikleniyorsa negatif kenar tetiklemeli devre olarak tanımlanır.

<span class="mw-page-title-main">Kare dalga</span>

Kare dalga, genliğin sabit bir frekansla, iki değer, maksimum ve minumum, arasında eşit süreler kalarak değiştiği, sinüsoidal olmayan periyodik dalgadır. İdeal kare dalgada genliğin iki seviye arasında geçişi anlıktır; bu sırada herhangi bir gecikme yaşanmaz. Ancak bu durum fiziksel sistemlerde gerçeklenebilir değildir. Kare dalgalar elektronikte ve sinyal işlemede sıkça kullanılır. Kare dalga, genlik seviyelerinde kalma süresi farklı olabilen dikdörtgen dalganın özel halidir.

Diferansiyel faz renkli televizyon yayıncılığında renklerin doğru okunması için ölçülmesi ve düzeltilmesi gereken bir değerdir.

Bilgi teknolojisi ve bilgisayar biliminde eğer önceki olayları veya kullanıcı etkileşimlerini hatırlamak için tasarlandıysa biliminde bir sistem durumsal olarak ifade edilmiştir, hatırlanan bilgiye ise sistemin durumu denir.

Bilişim ve haberleşmede, bit akışı veya ikili değer dizesi, bir bitler dizesidir.

Espresso mantık sadeleştiricisi, dijital mantık kapısı devrelerinin karmaşıklığını etkili bir şekilde azaltmak için sezgisel ve özel algoritmalar kullanan bir bilgisayar programıdır. Espresso, IBM'den Robert K. Brayton tarafından geliştirilmiştir. Richard L. Rudell daha sonra 1986'da "PLA Sentezi için Çok Değerlikli Mantık Minimizasyonu" başlığı altında Espresso-MV varyantını yayınladı. Espresso birçok türevine ilham vermiştir.

<span class="mw-page-title-main">Artımlı kodlayıcı</span>

Artımlı kodlayıcı (enkoder), cihaz hareket ettirildiğinde iki A ve B çıkış sinyalli darbeler veren, doğrusal veya döner elektromekanik bir cihazdır. "A" ve "B" sinyalleri birlikte hareketin hem oluşumunu hem de yönünü gösterir. Çoğu artımlı kodlayıcının ek bir çıkış sinyali vardır ve bu sinyale, kodlayıcının belirli bir referans konumunda olduğunu gösteren, genelde "indeks" veya "Z" denilir. Ayrıca bazı kodlayıcılar, rulman arızası veya sensör arızası gibi dahili arızayı gösteren durum çıkışı ("alarm") verir.

Dijital mantık ve bilgi işlemde sayaç belirli bir olay veya işlem olay sayısını genellikle saat ile ilişkili olarak kaydeden bir cihazdır. En yaygın tipi saat olarak adlandırılan bir giriş hattı ve çoklu çıkış hatları olan sıralı dijital mantık devresidir. Çıkış satırlarındaki değerler, ikili veya BCD sayı sistemindeki bir sayıyı temsil eder. Saat girişine uygulanan artırma veya azaltma her darbesi sayaçtaki sayıyı artırır veya azaltır.