İçeriğe atla

Sıra teorisi

Sıra teorisi, ikili bağıntıları kullanma sırasının sezgisel kavramını inceleyen bir matematik dalıdır. "Bu, şundan daha küçüktür" veya "bu, şundan daha öncedir" gibi durumları inceler.

Örneksel yaklaşım

Bir küme ve o küme üzerinde aşağıda tarif edilecek olan ikili bir bağıntıyı içeren aksiyomatik sistemlere denir. Bilinen sıralama bağıntısının soyutlanmasıyla elde edilirler. Kümemize X, bağıntımıza R adını verecek olursak, aşağıdaki aksiyomların sağlandığını varsayarız.

  • X kümesinin her a elemanı için R(a,a) bağıntısı sağlanmalıdır. ( şeklinde düşünülebilir, yansıma özelliği olarak bilinir.)
  • X kümesinin herhangi iki a ve b elemanı için R(a, b) ve R(b,a) bağıntıları sağlanıyorsa, olmalıdır. (hem hem de sağlanıyorsa a=b dir diye düşünülebilir, antisimetrik olma özelliği olarak bilinir.)
  • X kümesinin herhangi üç a, b ve c elemanı için hem R(a, b) hem de R(b,c) bağıntıları sağlanıyorsa, o zaman R(a,c) bağıntısı da sağlanmalıdır. (hem hem de ise de olmalıdır diye de düşünülebilir, geçişkenlik özelliği olarak bilinir)

Sıralamalara örnekler

(Doğal sayılar, bağıntısı) -- (Rasyonel sayılar, bağıntısı) -- (Reel sayılar, bağıntısı) -- (Kümeler Uzayı*, bağıntısı)


Teknik olarak bir küme değildir. Ancak bu sorun yaratmaz.

Sıralama çeşitleri

  • Eğer elimizdeki sıralama nesnesi, yukardaki aksiyomlara ek başka varsayımlar sağlamıyorsa elimizdeki sıralamaya "kısmi sıralama" denir. Yani her sıralama bir kısmi sıralamadır.
  • Eğer yukardaki aksiyomlara ek olarak X ten seçeceğimiz herhangi iki elemanı karşılaştırabiliyorsak (yani R(a, b) ve R(b,a) bağıntılarından biri mutlaka doğru olmak zorundaysa) o zaman elimizdeki sıralamaya doğrusal sıralama denir. Yukardaki örneklerden (Doğal Sayılar, ), (Rasyonel Sayılar, ) ve (Reel Sayılar, ) aynı zamanda doğrusal sıralamalara da örneklerken, (Kümeler Uzayı, bağıntısı), doğrusal olmayan kısmi bir sıralamadır. Nedeni herhangi iki kümeyi bağıntısına göre karşılaştırmanın mümkün olmamasıdır. Yani biri diğerini içermeyen iki kümenin varlığıdır.
  • Son olarak, doğrusal sıralama şartlarını sağlayan (X, R) sıralamalarından, "X in her alt kümesinin bir en küçük eleman içermesi şartı"nı sağlayanlara iyi-sıralama denir. Yukarıdaki örneklerden reel sayılar ve doğal sayılar iyi-sıralama iken, rasyonel sayılar iyi sıralama değildir. Örnek olarak "karekök ikiden büyük rasyonel sayılar" kümesinin en küçük bir elemanı olmaması verilebilir.

Sıralamaların önemi

  • Her sıralama nesnesi bir topolojik uzay yapısına sahiptir. Bu yapının açık kümelerinin temeli "öyle x elemanları ki " şeklinde ifade edilebilen kümelerden oluşur, a veya b az önceki formülde gözükmüyor da olabilirler.
  • Zorn'un Lemması, sayesinde kısmi sıralamalar matematiğin pek çok alanında uygulama bulmuşlardır. Mesela halka'larda maksimal ideallerin varlığı Zorn'un Lemması ve ideallarin bağıntısına göre kısmi bir sıralama oluşturduğu gerçeği kullanılarak ispatlanır.
  • Reel sayılar kümesinin rasyonel sayılar kümesini kullanılarak oluşturulmasının bir temeli de Alman matematikçi Richard Dedekind tarafından verilmiştir. Dedekind'in yöntemi rasyonel sayılar kümesinin bir iyi-sıralama haline getirilmesine dayanır. Diğer yöntem ise "bütünleme"dir.
  • İyi sıralamar matematikte nispeten nadir gözlenen, çok güçlü özellikler içeren objelerdir. Bu ilke ve kümeler teorisi arasındaki ilişki hakkında bilgi için ayrica İyi-sıralılık ilkesi Makalesi'ne bakabilirsiniz.

İlgili Araştırma Makaleleri

Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.

<span class="mw-page-title-main">Doğal sayılar</span> sayma sayıları kümesine 0ın eklenmesiyle oluşan sayılar kümesi

Doğal sayılar, şeklinde sıralanan tam sayılardır ve kimi tanımlamalara göre 0 sayısı da bu kümeye dâhil edilebilir. Aralarında standart ISO 80000-2'nin de bulunduğu bazı tanımlar doğal sayıları 0 ile başlatır ve bu durum negatif olmayan tam sayılar için 0, 1, 2, 3, ... şeklinde bir karşılık bulurken, bazı tanımlamalar 1 ile başlamakta ve bu da pozitif tam sayılar için 1, 2, 3, ... şeklinde bir eşlenik oluşturur. Doğal sayıları sıfır olmadan ele alan metinlerde, sıfırın da dahil edildiği doğal sayılar bazen tam sayılar olarak adlandırılırken diğer bazı metinlerde bu terim, negatif tam sayılar da dahil olmak üzere tam sayılar için kullanılmaktadır. Özellikle ilkokul seviyesindeki eğitimde, doğal sayılar, negatif tam sayıları ve sıfırı dışlamak ve saymanın ayrık yapısını, gerçek sayıların bir karakteristiği olan ölçümün sürekliliğiyle karşıtlık oluşturmak amacıyla sayma sayıları olarak adlandırılabilir.

Matematikte reel sayılar kümesi, Fransızca réel “gerçek” den gelmektedir. Oranlı sayılar kümesinin evrim sürecinden elde edilen bir varsayım kombinasyonudur. Reel sayılar kümesi sembolüyle gösterilir.

<span class="mw-page-title-main">Cantor'un köşegen yöntemi</span> teorem

Georg Cantor'un doğal sayılar ile reel sayıların birebir eşlemesinin yapılamayacağını göstermek için geliştirdiği yöntem. Böyle bir eşlemenin yokluğu sonsuz elemanlı kümelerin büyüklüklerinin karşılaştırılması kavramının gelişimi açısından son derece önemlidir.

Sayılabilirlik, bir kümedeki eleman sayısıyla doğal sayılar arasında birebir eşleme kurulabilme durumu.

Topolojik uzaylar, matematiğin Topoloji dalının başlıca uğraş konularıdır. Bir X kümesi ve bu kümenin alt kümelerinin bir kısmını içeren ve aşağıdaki varsayımları sağlayan S kümesinden oluşurlar:

Fonksiyon, matematikte değişken sayıları girdi olarak kabul edip bunlardan bir çıktı sayısı oluşmasını sağlayan kurallardır. Fonksiyon, 17. yüzyılda matematiğin kavramlarından biri olmuştur. Fizik, mühendislik, mimarlık ve birçok alanda kullanılmaktadır. Galile, Kepler ve Newton hareketlerin araştırılmasında, zaman ve mesafe arasındaki durumu incelemek için fonksiyonlardan faydalanmıştır. Dört işlemden sonra gelen bir işlem türüdür.

<span class="mw-page-title-main">Rasyonel sayılar</span>

Rasyonel sayılar, iki tam sayı arasındaki oranı temsil eden, bir pay p ve sıfırdan farklı bir payda q olmak üzere, bir bölme işlemi veya kesir formunda ifade edilebilen sayıları tanımlar. Örneğin, rasyonel bir sayı olarak kabul edilir, bu kapsamda her tam sayı da rasyonel sayılar kategorisindedir. Rasyonel sayılar kümesi, çoğunlukla kalın harf biçimindeki Q veya karatahta vurgusu kullanılarak şeklinde ifade edilir.

Matematikte iki kümenin kartezyen çarpımının herhangi bir alt kümesi bağıntı olarak tanımlanır. Bir kümedeki bir öğeyi başka bir kümedeki bir öğeye götürür. Yâni iki öğe arasında bir bağ kurar. Örneğin, göndermeler tek yönlü bir bağıntıdır.

<span class="mw-page-title-main">Halka</span>

Halka, matematikte cebirin temel yapılarından biridir ve soyut cebirde tam sayıların soyutlamasıdır. Bu yapıyı işleyen dala halka kuramı denir. Halkalar diğer bir temel yapı olan grupların üzerine inşa edilir. Her halka, aynı zamanda değişmeli bir gruptur, ama bir halkadan daha fazla özelliği sağlaması istenir. Örneğin halkada grup işlemine ek olarak ikinci bir işlem daha vardır. Halkalara örnek olarak tam sayılar, modülo n sayılar, polinomlar ya da karmaşık sayılar verilebilir.

Grup, soyut cebirin en temel matematiksel yapısıdır. Grup, ayrıca bir ikili işlemin tanımlı olduğu bir kümedir. Bir grubun grup olabilmesi için aynı zamanda bu işlemin birleşmeli, birim elemanlı ve ters elemanlı olması gerekir. Soyut cebirin halka, cisim, modül gibi diğer yapılarının temelini oluşturur.

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

Cisim, halka ve grup gibi soyut bir cebirsel yapıdır. Kabaca, elemanları arasında toplama, çıkarma, çarpma ve bölme yapılabilen ve bu işlemlerde sayılardan alışık olduğumuz temel aritmetik kurallarının geçerli olduğu bir küme olarak tanımlanabilir.

Vektör uzayı veya Yöney uzayı, matematikte ölçeklenebilir ve eklenebilir bir nesnelerin (vektörlerin) uzayına verilen isimdir. Daha resmî bir tanımla, bir vektör uzayı, iki elemanı arasında vektör toplamasının ve skaler denilen sayılarla çarpımın tanımlı olduğu ve bunların bazı aksiyomları sağladığı kümedir. Skalerler, rasyonal veya reel sayılar kümesinden gelebilir, ama herhangi bir cisim üzerinden bir vektör uzayı oluşturmak mümkündür. Vektör uzayları, skalerlerin geldiği cisime göre reel vektör uzayı, kompleks vektör uzayı veya genel bir cisim üzerinden K vektör uzayı şeklinde adlandırılır.

<span class="mw-page-title-main">Küme</span> matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir.

Küme, matematikte farklı nesnelerin topluluğu veya yığını olarak tanımlanmaktadır. Bu tanımdaki "nesne" soyut ya da somut bir şeydir. Fakat her ne olursa olsun iyi tanımlanmış olan bir şeyi, bir eşyayı ifade etmektedir. Örneğin, "Tüm canlılar topluluğu", "Dilimiz alfabesindeki harflerin topluluğu", "Masamın üzerindeki tüm kâğıtlar" tümcelerindeki nesnelerin anlaşılabilir, belirgin oldukları, kısaca iyi tanımlı oldukları açıkça ifade edilmektedir. Dolayısıyla bu tümcelerin her biri bir kümeyi tarif etmektedir. O halde, matematikte "İyi tanımlı nesnelerin topluluğuna küme denir." biçiminde bir tanımlama yapılmaktadır.

Bağıntıda yansıma, simetri ve geçişme özelliği varsa bu bağıntı denklik bağıntısıdır.

Matematikte ıraksak seri yakınsak olmayan bir sonsuz seridir. Bu, serinin kısmi toplamlarının herhangi bir limit değeri olmadığı anlamına gelmektedir.

Matematikte bir (P, ≤) kısmi sıralı kümesine ait S alt kümesinin üst sınırı, S'nin her elemanına eşit ya da ondan büyük olan P elemanı, alt sınır ise S'nin her elemanına eşit ya da ondan küçük olan P elemanı olarak tanımlanmaktadır. Üst sınırı olan bir küme üstten sınırlı, alt sınırı olan bir küme de alttan sınırlı olarak adlandırılmaktadır.

<span class="mw-page-title-main">Bidördey</span>

Soyut cebirde, bidördeyler sayılarıdır. Klasik dördeylere benzese de sayıları reel sayılar değil karmaşık sayılar kümesinin elemanlarıdır. Bir başka deyişle, dördey grubu elemanları olan elemanlarının katsayıları reel sayılar kümesinin elemanları değil karmaşık sayılar kümesinin elemanlarıdır.

<span class="mw-page-title-main">Hesaplanabilir sayı</span>

Matematikte, hesaplanabilir sayılar, belirlenen herhangi bir doğruluk seviyesine ulaşacak şekilde sonlu ve sona eren bir algoritma ile hesaplanabilen reel sayıları ifade eder. Bu sayılar, yinelemeli sayılar, etkili sayılar ya da hesaplanabilir reel sayılarolarak da adlandırılır. Hesaplanabilir reel sayılar kavramı, o dönemde mevcut olan sezgisel hesaplanabilirlik kavramı üzerinden Emile Borel tarafından 1912'de ortaya konmuştur.