İçeriğe atla

Sıkıştırma teoremi

Sıkıştırma teoreminin çizimi.
Bir dizi, aynı limite sahip diğer iki yakınsayan dizi arasında yer aldığında, aradaki dizi de bu limite yakınsar.

Kalkülüste, sandviç teoremi, sandviç kuralı, polis teoremi olarak da bilinen sıkıştırma teoremi bir fonksiyonun limitiyle ilgili bir teoremdir . İtalya'da teorem, jandarma teoremi olarak da bilinir.

Sıkıştırma teoremi kalkülüs ve matematiksel analizde kullanılır. Tipik olarak, limitleri bilinen veya kolayca hesaplanan diğer iki fonksiyonla karşılaştırarak bir fonksiyonun limitini doğrulamak için kullanılır. İlk olarak matematikçiler Archimedes ve Eudoxus tarafından π'yi hesaplama çabasıyla geometrik olarak kullanıldı ve Carl Friedrich Gauss tarafından modern terimlerle formüle edildi.

Birçok dilde (örn. Fransızca, Almanca, İtalyanca, Macarca ve Rusça), sıkıştırma teoremi aynı zamanda iki polis (ve sarhoş) teoremi veya bunun bir varyasyonu olarak da bilinir.[] Hikâye şudur ki, iki polis aralarında sarhoş bir mahkûma eşlik ediyorsa ve her iki memur da bir hücreye giderse, o zaman (izlenen yol ve mahkûmun polisler arasında yalpalıyor olabileceği gerçeğinden bağımsız olarak) mahkûm da hücreye girmelidir.

Açıklama

Sıkıştırma teoremi resmi olarak aşağıdaki gibi belirtilmiştir.[1]

I, limit noktası olarak a noktasına sahip olan bir aralık olsun. g, f, ve h; a noktasında zorunlu olmamak kaydıyla I aralığı üzerinde tanımlanan fonksiyonlar olsun. I aralığındaki a noktası hariç her x değeri için şunu var sayalım:

ve ayrıca varsayalım ki:

Öyleyse

  • ve fonksiyonlarının sırasıyla fonksiyonunun alt ve üst sınırları olduğu söylenir .
  • Burada, noktasının aralığının iç kısmında bulunması gerekli değildir. Aslında eğer noktası aralığının bir uç noktasıysa bu durumda yukarıdaki limitler sol veya sağdan yaklaşan limitlerdir.
  • Benzer bir ifade sonsuz aralıklar için geçerlidir: örneğin, eğer ise limit şeklinde alınabilir .

Bu teorem diziler için de geçerlidir. 'ye yakınsayan bir dizi ve de bir dizi olsun. Eğer ise , olur, öyleyse de 'ye yakınsar .

Örnek

x, 0'a giderken x2 sin(1/x) sıkışmaktadır.

Bu limit, limit kanunuyla saptanamaz:

Çünkü

'in limiti yoktur.

Bununla birlikte sinüs fonksiyonunun tanımıyla

dir ve bunu da

takip eder.

olduğundan sıkıştırma teoremine göre de 0 olmalıdır.

Kaynakça

  1. ^ Basic Real Analysis. 2nd. Birkhäuser. 2003. s. 104. ISBN 978-1-4939-1840-9. 14 Nisan 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Ekim 2020. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Riemann toplamı</span>

Matematikte, Riemann toplamı genellikle fonksiyon eğrisinin altında kalan bölgenin yaklaşık alanıdır. Bu toplama, Alman matematikçi Bernhard Riemann'ın soyadı verilmiştir.

<span class="mw-page-title-main">İntegral</span> fonksiyon eğrisinin altında kalan alan

İntegral veya tümlev, toplama işleminin sürekli bir aralıkta alınan hâlidir. Türev ile birlikte kalkülüsün temelini oluşturan iki işlemden birisidir. Kalkülüsün temel teoremi sayesinde aynı zamanda türevin ters işlemidir.

<span class="mw-page-title-main">Limit</span> Sayıların ucu

Limit kelimesi Latince Limes ya da Limites 'den gelmekte olup sınır, uç nokta anlamındadır. Öklid ve Arşimet tarafından eğrisel kenarlara sahip şekillerle ilgili olan teoremlerde kullanılmıştır. Limit kavramı, çok önceleri kullanılmasına rağmen sonra unutulmuş ve daha sonra Newton ile Leibniz'in eserlerinde görülmüştür. Mesela, diferansiyel hesapta bir eğri sonsuz küçük uzunlukta sonsuz kenara sahip bir çokgen olarak kabul edilir. Limit kavramından ortaya çıkan diferansiyel hesap, pek çok fizik probleminin kolayca ele alınmasını sağlar.

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

Genel fonksiyonlarda limit hesaplamak için bazı pratik kurallar verilmiştir. Formüllerdeki a ve b sayılarının x'e göre sabit olduğu düşünülecektir

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.

, veya şekillerinde gösterilen ve 1'e eşit olan matematiksel ifade. Bu eşitliğin ispatları:

Matematikte, bir kuvvet serisinin yakınsaklık yarıçapı negatif olmayan bir gerçel sayı veya ∞ olan bir niceliktir. Verilen bir kuvvet serisinin yakınsaklık yarıçapı serinin yakınsak olduğu bölgeyi gösterir. Bu yakınsaklık yarıçapının içinde kalan bölgede, kuvvet serisi mutlak yakınsak ve aynı zamanda tıkız yakınsaktır. Seri yakınsak ise, o zaman bu seri bir analitik fonksiyonun bu yakınsaklık yarıçapının belirlediği bölgenin içinde kalan bölgede yakınsayan bir Taylor serisidir.

<span class="mw-page-title-main">Schwarz önsavı</span>

Matematiğin bir alt dalı olan karmaşık analizde Schwarz önsavı, karmaşık düzlemdeki birim daire üzerinde tanımlı ve değer kümesi yine aynı birim daire olan holomorf fonksiyonların aldığı değerlerin üzerine kestirimler veren önemli bir sonuçtur. Her ne kadar bilim dizininde önsav olarak isim almışsa da kendi başına önemli bir teoremdir. Bu sonuç, günümüzde herhangi bir karmaşık analiz kitabında ifade edilen şeklinden daha farklı bir şekilde ilk defa Alman matematikçi Hermann Amandus Schwarz tarafından kendi doktora tezinde ifade edilmiştir. Sonucu günışığına çıkarıp günümüzdeki ifadesini yazan ve aynı zamanda bu önsavın tanınmasını sağlayan matematikçi ise Yunan matematikçi Constantin Carathéodory olmuştur.

Sonlu fark, f(x + b) − f(x + a) matematiksel ifadesidir.

Kalkülüste tek taraflı limit, x reel değişkenli bir f(x) fonksiyonun her iki limitidir. Burada x, ya üstten ya da alttan belirli bir noktaya yaklaşır. Bu limit şöyle sembolize edilebilir:

veya veya ya da

Matematikte bir fonksiyonun limiti, kalkülüs ve analizde kullanılan bir temel kavramdır ve belirli bir girişe yaklaşan bir fonksiyonun davranışı ile ilgilidir.

<span class="mw-page-title-main">Dizinin limiti</span>

Matematikte, bir dizinin limiti, dizinin terimlerinin yaklaştığı değerdir. Eğer böyle bir limit varsa diziye yakınsak denir. Yakınsamayan diziye ıraksak denir. Bir dizinin limiti, analizin nihai olarak dayandığı temel kavram olarak görülür.

Temel grup, Henri Poincaré'in 1895'te yayınladığı "Analysis Situs" adlı makalesinde tanımlanmıştır. Kavram, Bernhard Riemann, Poincaré ve Felix Klein'ın çalışmalarıyla Riemann yüzeyleri teorisinden ortaya çıkmıştır. Karmaşık değerli fonksiyonların monodromik özelliklerini açıkladığı gibi kapalı yüzeylerin tam bir topolojik sınıflandırılmasını sağlar.

Parçalı fonksiyon, matematikte tanım aralığı alt aralıklara parçalanan ve her bir alt aralık için farklı bir fonksiyon olarak tanımlanan bir fonksiyon türüdür.

<span class="mw-page-title-main">Rolle teoremi</span> reel türevlenebilir bir fonksiyonun iki eşit değeri arasındaki durağan noktalar üzerine bir reel analiz teoremi

Kalkülüste, Rolle teoremi veya Rolle lemması temel olarak, iki farklı noktada eşit değerlere sahip herhangi bir gerçel değerli türevlenebilir fonksiyonun, aralarında bir yerde, teğet doğrusunun eğiminin sıfır olduğu en az bir noktaya sahip olması gerektiğini belirtir. Böyle bir nokta, durağan nokta olarak bilinir. Bu nokta, fonksiyonun birinci türevinin sıfır olduğu noktadır. Teorem adını Michel Rolle'den almıştır.

Trigonometrik fonksiyonların türevleri, trigonometrik bir fonksiyonun türevini yani bir değişkene göre değişim oranını bulmanın matematiksel sürecidir. Örneğin, sinüs fonksiyonunun türevi şeklinde yazılır, bu da sin(x) fonksiyonunun belirli bir açı x = a için değişim oranının o açının kosinüsü ile verildiği anlamına gelir.