İçeriğe atla

Sürekli olasılık dağılımları

Olasılık kuramı içinde bir olasılık dağılımı, eğer yığmalı dağılım fonksiyonu bir sürekli fonksiyon ise dağılım da sürekli olarak anılır. Bu demektir ki incelenmekte olan dağılımı gösteren X rassal değişkeni için; tüm reel sayı olan a için

Pr[X = a] = 0

yani herhangi bir a sayısı için, Xın a değerini alması için olasılık sıfırdır. Eğer X rassal değişkeni için olasılık dağılımı sürekli ise o halde X sürekli rassal değişken olarak isimlendirilir.

Bir Aralıklı olasılık dağılımı bir sıfır olasılığı olan bir olayın ortaya çıkması imkânsızdır denilebilme uygun olmakla beraber bunu bir sürekli dağılım için söylemek imkânsızdır ; çünkü o halde hiçbir değer bulunması imkân dahilinde değildir. Bu bir paradoksdur; ve bunun çözümlenebilmesi X için olasılığın bir sayılamaz sette (örneğin bir aralık matematik uygulanan aralıkta) belirli değerler aldığının ve bunun tek tek olasılıkların toplanması suretiyle elde edilemeyeceğinin farkına varılması ile başarılır.

Alternatif ve daha güçlü bir tanıma göre sürekli olasılık dağılımları terimi yalnızca olasılık yoğunluk fonksiyonu özelliğine sahip olan dağılımlar için rezerve edilmelidir. Bunlar daha dakik olarak mutlak sürekli adı verilen rassal dağılımlardır [1] Bir rassal değişken Xin mutlak sürekli değişken olması demek X'in, Lebesgue ölçümünün 0 olduğu bir aralıkta herhangi bir verilmiş alt set S içinde bir değer almasının olasılığının 0a eşit olması demektir. Bu tanım, her bir reel sayı olan a için Pr[X =a]=a olması koşulu ile, aynı değildir. Çünkü Lebesgue-ölçümü 0 olan sayılamayan setler bulunmaktadır (örneğin Cantor seti).

Cantor dağılımı gösteren bir rassal değişken, birinci zayif tanıma göre sürekli bir dağılımdır; ancak ikinci alternatif daha sıkı tanıma göre ise (mutlak) olarak sürekli değildir. Bu dağılım aynı zamanda ayrık da değildir ve ayrık ve mutlak sürekli rassal değişkenlerin bir ağırlıklı ortalaması da değildir.

Ancak genellikle pratik uygulamaları için rassal değişkenler çok defa ya ayrık ya da mutlak süreklilerdir ; ama birkaç bileşik dağılım da doğal olarak bulunabilir.

Normal dağılım, tekdüze dağılım (sürekli), beta dağılımı ve gamma dağılımı çok iyi bilinen mutlak sürekli dağılımlardır. Normal dağılım veya Gauss tip dağılım veya çan eğrili dağılım fiziksel doğada çok bulunmakta ve pratik uygulanmalı istatistikte çok zaman kullanılmaktadır. Buna neden merkezsel limit teoremidir; bu teoreme göre birçok küçük ve bağımsız değişkenlerin toplamı yaklaşık olarak normal değişken ile modelleştirilmesidir.

Kaynakça

  1. ^ Radon-Nikodym teoremi maddesine bakınız.

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

İstatistik bilimi için mod bir veri kümesi içinde en sık görülen değerdir. Tepedeğer olarak da adlandırılır. Bazı kullanım alanlarında, özellikle eğitim alanında, örnek veriler çok kere puan olarak anılmakta ve örnek mod değerine ise mod puanı adı verilmektedir.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

Bernoulli dağılımı olasılık kuramı ve istatistik bilim dallarında, p olasılıkla başarı ile 1 değeri alan ve olasılıkla başarısızlık ile 0 değeri alan bir ayrık olasılık dağılımıdır. İsmi ilk açıklamayı yapan İsviçreli bilim insanı Jakob Bernoulli anısına verilmiştir.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

<span class="mw-page-title-main">Tekdüze dağılım (ayrık)</span>

Ayrık tekdüze dağılım, olasılık kuramı ve istatistik bilim kollarında, bir rassal değişken için belirli bir alt ve üst sınır tam sayı arasında mümkün olan bir sıra tam sayı sonuç değerlerin hepsinin eşit ölçüde olasılık göstermesi özelliğini taşıyan ayrık olasılık dağılımıdır.

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

<span class="mw-page-title-main">Bozulmuş dağılım</span>

Matematik bilim dalında bir bozulmuş dağılım desteği sadece tek bir noktadan oluşan bir ayrık rassal değişken için bir olasılık dağılımıdır. Bu rassal değişken için örnekler her iki tarafı da yazı olan özel bir madeni disk veya her altı yüzü de aynı sayıyı gösteren özel bir zar olabilir. Örneklerden de görülebildiği gibi, bu türlü rassal değişken günlük yaşantıya göre hiç rastgelelik niteliği taşımamaktadır; ancak matematik bilimi içinde bulunan rassal değişken tanımlama özelliklerinin hepsini tatmin etmektedir.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

<span class="mw-page-title-main">Ayrık olasılık dağılımları</span>

Olasılık kuramı içinde bir olasılık dağılımı eğer bir olasılık kütle fonksiyonu ile karakterize edilmiş ise ayrık olarak anılır. Böylelikle bir rassal değişken olan X için dağılım ayrık ise o zaman X bir ayrık rassal değişken olarak bilinir. Bu halde

<span class="mw-page-title-main">Olasılık kütle fonksiyonu</span>

Olasılık kuramı bilim dalında bir olasılık kütle fonksiyonu bir ayrık rassal değişkenin olasılığının tıpatıp belli bir değere eşit olduğunu gösteren bir fonksiyondur. Olasılık kütle fonksiyonu, olasılık yoğunluk fonksiyonundan farklıdır; çünkü olasılık yoğunluk fonksiyonu yalnızca sürekli rassal değişkenler için tanımlanmış olup doğrudan doğruya olasılık değerini vermezler. Olasılık yoğunluk fonksiyonunun bir belli değer aralığı için integrali alınırsa bu rassal değişkenin belirlenen değer aralığı için olasılığını verir.

Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

Olasılık kuramında iki olayın bağımsız olması bu olaylardan birinin gerçekleşme olasılığının diğer olayın gerçekleşip gerçekleşmediğine bağlı olmaması anlamına gelmektedir. Örneğin;

<span class="mw-page-title-main">Bir olayın olma olasılığı</span>

Olasılık yoğunluk fonksiyonu, olasılık kuramı ve bir olayın olma olasılığı dallarında bir rassal değişken olan X için reel sayılı sürekli fonksiyondur.