İçeriğe atla

Süpereş

Süpereş(İngilizce:Superpartner veya Sparticle), parçacık fiziğinde bir varsayımsal temel parçacıktır. Süpersimetri sinerjik teorilerinden biri olan yüksek enerji fiziği bu "gölge" parçacıklarının varlığını tahmin ediyor.[1][2]

Süpereş kelimesi, süpersimetri ve kelimesinin birleşmesinden oluşmuştur.

Teorik tahminler

Süpersimetri teorisine göre; her fermiyonun partner(eş) bozona sahip olması -fermiyonun süpereşi- her bozonun da eş fermiyonu olması gerekmektedir.[1][3] Bu simetri skuark, neutralino, chargino ve slepton gibi s-parçacık adlı süpersimetrik parçacıkların varlığını öngörür.

Gerçek skaler parçacıklarda ikinci bir gerçek skaler parçacık alanı vardır. Örneğin axionda, axinos ve saxions adında iki parçacık ön görülmektedir.

Süpereş sayısı birden fazla olabilir. Örneğin dördüncü boyutta bir süpersimetride bir foton iki farklı fermiyon süper eşi ve bir skaler süpereşi bulunabilir.

Simdiye kadar hiçbir süpereş izinin bulunmaması süpersimetri torisinin doğru olmadığı anlamıma gelebilir. Ancak eğer doğruysa yüksek enerjili parçacık çarpıştırıcılarda bunu üretmek mümkündür.[1] 1981'de Howard Georgi ve Savas Dimopoulos tarafından ileri sürülen Minimal Süper Simetrik Standart Model, süper partnerlerin kütlelerinin 100 GeV ve 1 TeV arasında olduğunu tahmin eder. Standart Model’deki tüm parçacıklar dönüşü sıradan parçacıktan ½ kadar farklı olan süpereşe sahiptir. Bu da bu süpereşlerin gerçek eşlerinden 1000 kata kadar daha ağır olabileceği anlamına gelebilir.[1] Bu yüzden şu anki parçacık çarpıştırıcılar bu parçacıkları üretemeyebilir.

Bazı araştırmacılar Büyük Hadron Çarpıştırıcısı çarğıştırıcısında süpereşin üretilebileceği umudundadırlar.[1] Ancak herhangi bir kanıt henüz bulunamamıştır.[4]

Ayrıca bakınız

  • Standart modelin ötesindeki fizik
  • Kuramsal fizik

Kaynakça

  1. ^ a b c d e Langacker, Paul (22 Kasım 2010). Sprouse, Gene D. (Ed.). "Meet a superpartner at the LHC". Physics. 3 (98). New York: American Physical Society. Bibcode:2010PhyOJ...3...98L. doi:10.1103/Physics.3.98. ISSN 1943-2879. OCLC 233971234. 29 Ocak 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Şubat 2011. 
  2. ^ Overbye, Dennis (15 Mayıs 2007). "A Giant Takes On Physics' Biggest Questions". The New York Times. Manhattan: Arthur Ochs Sulzberger, Jr. s. F1. ISSN 0362-4331. OCLC 1645522. Erişim tarihi: 21 Şubat 2011. 
  3. ^ Quigg, Chris (17 Ocak 2008). "Sidebar: Solving the Higgs Puzzle". Scientific American. Nature Publishing Group. ISSN 0036-8733. OCLC 1775222. 19 Mart 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Şubat 2011. 
  4. ^ Jamieson, Valerie (13 Aralık 2013). "Higgs Nobel bash: I was at the party of the universe". New Scientist. 20 Aralık 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Aralık 2013. So far the Higgs hasn't given many supersymmetric clues. 

İlgili Araştırma Makaleleri

Parçacık fiziğinde, bozonlar Bose-Einstein yoğunlaşmasına uyan parçacıklardır; Satyendra Nath Bose ve Einstein'a atfen isimlendirilmişlerdir. Fermi-Dirac istatistiklerine uyan fermiyonların tersine, farklı bozonlar aynı kuantum konumunu işgal eder. Böylece, aynı enerjiye sahip bozonlar uzayda aynı mekânı işgal edebilirler. Bu nedenle her ne kadar parçacık fiziğinde her iki kavram arasındaki ayrım kesin belirgin değilse de, fermiyonlar genelde madde ile bileşikken, bozonlar sıklıkla güç taşıyıcı parçacıklardır.

Temel etkileşimler veya Temel kuvvetler, fiziksel sistemlerde daha temel etkileşimlere indirgenemeyen etkileşimlerdir. Bilinen dört temel etkileşim vardır. Bunlar uzun mesafelerde etkileri olabilen kütleçekimsel, elektromanyetik etkileşimler ve atomaltı mesafelerde etkili olan güçlü nükleer ve zayıf nükleer etkileşimlerdir. Her biri bir alan dinamiği olarak anlaşılmalıdır. Bu dört etkileşim de matematiksel açıdan bir alan olarak modellenebilir. Kütleçekim, Einstein'ın genel görelilik kuramı tarafından tanımlanan uzay-zamanın eğriliğe atfedilirken diğer üçü ayrı kuantum alanlar olarak nitelendirilir ve etkileşimlerine Parçacık fiziğinin Standart Modeli tarafından tanımlanan temel parçacıklar aracılık eder.

Fermiyon, parçacık fiziğinde, Fermi-Dirac istatistiğine uyan parçacıktır. Başka bir deyişle, Enrico Fermi ve Paul Dirac'ın gösterdiği üzere, Bose-Einstein istatistiğine sahip bozonların aksine fermiyonlar, belirtilen zamanda sadece bir kuantum durumuna karşılık gelebilen parçacıklardır. Eğer iki ayrı fermiyon uzayda aynı yerde tanımlanmışsa her bir fermiyonun özelliği birbirinden farklı olmak zorundadır. Örnek olarak, iki elektron bir çekirdeğin etrafında aynı orbitalde bulunacaklarsa, bu kez aynı spin durumunda olamazlar ve her orbitalde elektronun biri yukarı diğeri aşağı spin durumundadır.

<span class="mw-page-title-main">Standart Model</span>

Standart Model, gözlemlenen maddeyi oluşturan, şimdiye dek bulunmuş temel parçacıkları ve bunların etkileşmesinde önemli olan üç temel kuvveti açıklayan kuramdır.

Süper simetri, parçacık fiziğinde uzay-zaman simetrisinin karşılığıdır. Bu iki temel parçacıktan oluşur.

CMS deneyi, Avrupa Nükleer Araştırma Merkezi'nde (CERN) LHC hızlandırıcısı üzerinde kurulmuş olan ve 2008 yılında çalışmaya başlayarak proton-proton çarpışmaları sonucu ortaya çıkan parçacıkların izlerini ve enerjilerini ölçen beş deneyden biridir. İsmi İngilizcede Compact Muon Selenoid sözcüklerinin baş harflerinden gelir. 15 m yükseklikte, 22 m boyunda, toplam 12500 ton ağırlığa sahip bir düzenektir. Dedektörün en iç bölgesinde 3.85 Tesla kadar magnetik bir alan şiddetine sahip güçlü bir süperiletken mıknatıstır ve özellikle yeni fizik kanunlarına ait sinyalleri keşfetmek üzere dizayn edilmiştir, fakat daha önceki çarpıştırma deneylerinden daha yüksek enerjilere çıkabilmesi sebebi ile önceki deney sonuçlarını daha yüksek duyarlılıkta ölçümler yapabilmektedır.

<span class="mw-page-title-main">Higgs bozonu</span> atom altı parçacık

Higgs bozonu; Peter Higgs, Gerald Guralnik, Richard Hagen, Tom Kibble, François Englert ve Robert Brout tarafından Standart Model'deki fermiyonlara kütle kazandırmak için varlığı öne sürülmüş, spini 0 (sıfır) olan parçacık. H veya h olarak kısaltılır. Aralık 2011'de o zamanlar iki ana deneyin sözcüleri birbirlerinden bağımsız sonuçlara dayanarak Higgs parçacığının 125 GeV/c2 değerinde bir kütleye sahip olabileceğini belirtti. Ayrıca yaptıkları açıklamada 115–130 GeV/c2 arası hariç Higgs'in bulunmayacağı diğer kütle aralıklarının önemli ölçüde elendiğini belirttiler. BHÇ'nin kesin bir sonuç için gerekli cevabı 2012'nin sonunda vereceği söylendi. 22 Haziran 2012'de CERN, yapılan deneylerin son durumu hakkında bir seminer verileceğini duyurdu. 28 Haziran 2012 civarlarında parçacığın bulunduğu yönünde açıklamaların geleceği medyada yayılmaya başladı fakat bunun "sadece güçlü bir sinyal" mi yoksa resmi bir keşif mi olacağı belirsizdi.

Parçacık fiziğinde şu anda bilinen ve kuramsal olan temel parçacıkları ve bu parçacıklarla oluşturulabilen bileşik parçacıkları içeren listedir.

W ve Z bozonları, zayıf etkileşime aracılık eden temel parçacıklardır. Bu bozonların keşfi parçacık fiziğinin Standart Modeli için büyük bir başarının müjdecisi oldu.

<span class="mw-page-title-main">Temel parçacık</span> Başka parçacıklardan oluştuğu bilinmeyen parçacıklar.

Temel parçacıklar, bilinen hiçbir alt yapısı olmayan parçacıklardır. Bu parçacıklar evreni oluşturan maddelerin temel yapıtaşıdır. Standart Model'de kuarklar, leptonlar ve ayar bozonları temel taneciklerdir.

Üst kuark, parçacık fiziğinde Standart Model'de tanımlanan bir parçacık. +2/3 elektrik yüküne sahip üçüncü kuşak kuarktır. 171,2 GeV/c2 kütleye sahip temel parçacık.

<span class="mw-page-title-main">Peter Higgs</span> İngiliz teorik fizikçi (1929–2024)

Peter Ware Higgs, İngiliz teorik fizikçi.

<span class="mw-page-title-main">François Englert</span>

François, Baron Englert, Nobel Ödüllü bir kuramsal fizikçidir. Kuramsal fizik araştırma grubunun bir üyesi olduğu Université libre de Bruxelles'de fahri profesörlük görevini sürdürmektedir. Englert ayrıca Kaliforniya'daki Chapman Üniversitesi'nin Kuantum Çalışmaları Enstitüsünün de bir üyesidir. 2010'da J.J. Sakurai Kuramsal Fizik Ödülü, 2004'te Wolf Fizik Ödülü, ve 1997'de Avrupa Fizik Topluluğu Yüksek Enerji ve Parçacık Fiziği ödülü gibi birçok ödül kazanmıştır. İstatiksel fizik alanında katkıları bulunmaktadır. François Englert'e 2013'te Higgs Mekanizması'nın keşfi nedeniyle Peter Higgs ile birlikte Nobel Fizik Ödülü verilmiştir.

Preonlar parçacık fiziğinde, kuarklar ve leptonların altparçacıkları olan nokta parçacıklardır. Terim 1974’te, Jogesh Pati ve Muhammed Abdüsselam tarafından oluşturulmuştur. Preon modellerine olan ilgi, 1980’lerde zirve noktasına ulaşmıştır ancak parçacık fiziği Standart Model'i, fiziğin kendisini en başarılı şekilde tanımlamaya devam ettiğinden ve lepton ile kuark kompozitleri hakkında hiçbir deneysel veri bulunmadığından dolayı bu ilgi azalmıştır.

Standart Model ötesi fizik ile Standart modeldeki kütlenin kökeni, güçlü CP problemi, nötrino salınımı, baryon asimetrisi ve karanlık madde ve karanlık enerjinin doğası gibi kuramsal olarak geliştirilmiş olayların açıklanmaya çalışılması kastedilir.Standart model’in matematiksel taslağında bulunan başka problem de genel görelilik ile olan tutarsızlığı ve iki kuramında kesin koşullarda geçerli çökmesidir.. Standart model’in ötesinde süper simetri sayesinde en düşük süper simetrik standart model (MSSM) ve hemen hemen en düşük süper simetrik standart model (NMSSM), yapılan değişik açıklamalar sayesinde de sicim kuramı, M-kuramı ve fazladan boyutlar gibi çeşitli uzantılar bulunur. Kuramların hepsi güncel olayın bütünlüğünü tekrar üretmeye yatkın olduğundan, Her şeyin Kuramı’na adım atmaya ya da bunu bulmaya en yakın kuram sadece deneyler vasıtayla bulunabileceğinden kuramsal ve deneysel fizikteki en aktif konulardan biri standart modelin ötesindeki fiziktir.

Nötralino, süpersimetride varsayımsal bir parçacıktır. Fermiyon ve elektrik olarak nötr olan 4 nötralino vardır. En hafifleri tipik olarak dengelidir. Tipik olarak N͂1^0 ; N͂2^0, N͂3^0 ve N͂0^4 olarak adlandırılırlar. Bu 4 durum bino ve wino'nun karışımıdır. Genelde renkli süpersimetrik parçacıklardan oluşurlar.

Kuantum bilinmezliği, bir kuantum alan teorisinde, şarj taraması, klasik teorinin gözlemlenebilir "yeniden normalize" şarj değerini kısıtlayabilir. Renormalize değeri sadece izin verilen değer sıfırsa, teorisi "önemsiz" ya da etkileşmeyen olmayan şeklinde söylenir. Bir kuantum alan teorisi olarak gerçekleştiği zaman, bu şaşırtıcı bir şekilde, etkileşim parçacıkları tanımlamak için görünen bir klasik teori, serbest parçacıkların etkileşimde olmayan bir "önemsiz" teori haline gelebilir. Bu olgu, kuantum saçmalığı olarak adlandırılır. Güçlü kanıtlar, sadece sayısal Higgs bozonu ile ilgili bir alan teorisi, uzay-zaman boyutlarının önemsiz olduğu fikrini desteklemektedir ama genel olarak bilinmemektedir Higgs bozonu yanında diğer parçacıkları içeren gerçekçi modeller için bir durumdur. Çünkü Higgs bozonu, parçacık fiziğinin standart modelinde merkezi bir rol oynar, Higgs modellerinde önemsizlik sorusu büyük önem taşımaktadır. Bu Higgs önemsizliği, quantum elektro dinamiklerdeki Landau kutup problemine benzer ki bu quantum teorisi, hiçbir etkileşim olmadığı sürece renormalize değer, sıfıra ayarlanır. Kuantum teorisi çok yüksek bir ivme de tutarsız ölçeklerde olabilir. Kuantum elektrodinamiği Landau kutup problemi ile benzerdir. Landau kutup sorusu genellikle tutarsızlık görünür, erişilemeyecek büyük ölçekli ivme kuantum elektrodinamiği için küçük bir akademik ilgi olarak kabul edilir. Ancak bir "önemsiz" teori tutarsızlıkları gibi, LHC'de deney çabaları erişilebilir olabilir. İvme ölçeği olarak başlangıç düzeyindeki ölçeğinin Higgs bozonu içeren teoriler de söz konusu değildir. Bu Higgs teorileri ise, kendisi ile Higgs parçacığının etkileşimleri elektron ve müon olanlar gibi, W ve Z bozonlarının kitleleri yanı sıra lepton kitleleri oluşturmak için olumludur. Böyle standart model olarak parçacık fiziği gerçekçi modellerin önemsizlik sorunlarından muzdarip, bir başlangıç seviyesi ölçeği Higgs parçacığının değiştirilmesi veya terk edilmesi gerekebilir.

F. Takayama and M. Yamaguchi, Phys. Lett. B 485 (2000)Genel görelilik ve Süpersimetri teorilerinin birleştirilmesi ile süper kütleçekimi oluşmuştur. Gravitino (G͂), graviton denilen varsayılmış parçacığın, süper simetrideki kalibretik Fermiyonudur. Bu parçacık, Kara madde için bir aday olarak önerilmiştir.

<span class="mw-page-title-main">Gaugino</span>

Parçacık fiziğinin, süpersimetri teorilerinde, bir gaugino, süpersimetri ile birleştirilmiş ayar teorisi tarafından tahmin edildiği gibi, bir ayar alanının varsayımsal fermiyonik süpersimetrik alan kuantumudur(süperpartner). Gravitino hariç tüm gauginolar 1/2 dönüşe sahiptir.

Parçacık fiziğinde, küçük Higgs modelleri, Higgs bozonunun TeV enerji ölçeğinde bazı küresel simetri kırılmalarından kaynaklanan pseudo-Goldstone bozonu olduğu fikrine dayanmaktadır. Küçük Higgs modellerinin amacı, elektrozayıf simetri kırılmasından sorumlu Higgs bozon(lar)ının kütlesini stabilize etmek için bu tür yaklaşık küresel simetrilerin kendiliğinden kırılmasını kullanmaktır.