İçeriğe atla

Süper kütleçekimi

Kuramsal fizikte, süper kütleçekimi genel görelilik kuramı ve süpersimetriyi birleştiren bir alan kuramıdır. Süper kütleçekiminde, süper simetri bölgesel simetridir (kütleçekimsel olmayan süper simetrik kuramların aksine, örneğin minimal süper simetrik standart model). Süper simetrinin üreteçleri Poincaré grubu ve süper-Poincaré cebiri ile sarılmıştır, süper kütleçekiminin süper simetriyi doğal olarak takip ettiği görülebilir.

Kütleçekiminin her kuramı gibi süper kütleçekimi de kuantumu graviton olan dönüş-2 alanını kapsar. Süper simetri süper eşe sahip olabilmek için gravitona ihtiyaç duyar. Bu alanın dönüşü 3/2 ve kuantumu da gravitinodur. Gravitino alanlarının sayısı süper simetrilerin sayısına eşittir.

Tarihi

Ölçüm Süper simetrisi

Süper simetrinin ilk yerel kuramı 1975 yılında Dick Arnowitt ve Pran Nath tarafından ortaya atılmış ve ölçüm süper simetrisi olarak adlandırılmıştır.

SUGRA

SUGRA ya da süper kütleçekimi, 1976 yılında Dan Freedman, Sergio Ferrara ve Peter Van Nieuwenhuizen tarafından keşfedilmiştir. Ancak, çeşitli boyut sayıları ve ilave (N) süper simetri yükleri ile ilgili kuramlarr tarafından kısa sürede genellenmiştir. N>1 olan Süper kütleçekimi kuramları genellikle büyütülmüş süper kütleçekimi olarak adlandırılır. (SUEGRA). Bazı süper kütleçekimi kuramları daha boutsal düşürme yolu ile yüksek boyut super kütleçekimi kuramlarına eşlik olarak gösterilir (örneğin N=1 11-boyutlu süper kütleçekimi boyutsal olarak düşürülünce N=8, d= 4 SUGRA). Sonuçlanan kuramlarda bazen 1919’da yapılı 5-boyutlu kütleçekimsel kuram olan Kaluza-Klein kuramları kastedilir, çemberde boyutsal olarak düşüş gerçekleştiğinde 4-boyut ağır olmayan modlar elektromanyetizmin kütleçekimi ile birleşmiş hali kastedilir.

mSUGRA

mSUGRA minimal super kütleçekimi anlamına gelir. N=1 süper kütleçekimi taslağı içerisindeki parçacığın gerçekçi yapısının modeli super Higgs mekanizması tarafından yıkımı 1982 yılında Pran Nath, Ali Chamseddine ve Richard Arnowitt tarafından gerçekleştirilmiştir. Büyük Birleştirme Kuramlarınca bu tür modellerin sınıflar minimal super kütleçekimi olarak bilinir, kütleçekimi gizli bir sektörünün varlığının yıkımına SUSY sayesinde vasıta olur. Minimal kütleçekimi, super Higgs etkisinin doğal bir sonucu olarak yumuşak SUSY yıkımı terimlerini meydana getirir. Elektrozayıf simetrinin ışınımsal kırılımlar tekrar normalleştirme grup denklemlerinden dolayı hızlıca gerçekleşen bir sonuçtur.Sadece dört tane değişken gerektiren ve Büyük Birleştirmedeki düşük enerji olaylarını kararlaştırmaya bir işaret olarak göründüğünden minimal super kütleçekimi öngörülen gücünden dolayı parçacık fiziğinde araştırılan en geniş konulardan biridir.

11d: maksimal SUGRA

Süper kütleçekiminlerinden 11-boyutlu kuram, her şeyin kuramının ilk potansiyel adayı olduğundan kayda değer bir heyecana neden olmuştur.Bu heyecan dört yapıtaşı üzerine inşa edilmiştir, ancak ikisi çoktan gözden düşmüştür:

  • Wener Nahm tek bir gravitonlu tutarlı en büyük boyut sayısının 11 boyut olduğunu ve iki dönüşlü parçacıkların daha fazla boyutu olabileceğini göstermiştir. Bu problemlerde iki boyutun zaman benzerliğine sahip olduğu Itzhak Bars tarafından vurgulanıp 12 boyuttan kaçınılmaya çalışılmıştır.
  • 1981’de, Ed Witten Standart Model’in ölçüm gruplarını kapsayan en küçük ve yeterli boyut sayısının 11 olduğunu ve güçlü etkileşimler için SU(3) ve SU(2) kere U(1)’in de elektrozayıf etkileşimler için olduğunu gösterdi. Bugünlerde, herhangi bir boyut sayısı için süper kütleçekiminde standart model ölçüm grubuna uyarlanabilen birçok teknik mevcuttur. Örneğin, 1980'lerin ortalarında ve sonlarında tip 1 ve heterotic sicim kuramları genellikle kullanılmıştır.Tip II Sicim Kuramı’nda kesin Calabi-Yau çeşitliliklerini sıkıştırarak da elde edilebilirler. Bugünlerde, biri D-membran da ölçüm simetirilerini düzenlemede kullanılabilir.
  • 1978’de, Eugéne Cremmer, Bernard Julia ve Joel Scherk (CJS) 11-boyutlu süper kütleçekimi kuramı için klasikleşmiş eylemi bulmuşlardır.Bu bulgu, bugüne kadar süper simetrili, 11 boyutlu bir ve ikiden fazla dönüş alanı olmayan kuram olarak gelmiştir. Diğer 11-boyutlu kuramlar, CJS’nin bu kuramına kuantum mekaniksel eşitsiz olarak bilinir, ancak klasik olarak eşitliklidir. Örneğin, 1980’in ortalarında, Bernard de Wit ve Hermann Nicolai D=11 süper SU(8) değişmezlikle kütleçekimi adında alternatif bir kuram bulmuşlardır.Bu kuram, açıkça Lorentz değişmezi değilken, birçok açıdan da CJS kuramından üstündür, örneğin; klasik hareket denklemlerine başvurmadan boyut sayısını 4’e düşürebilmiştir.
  • 1980’de, Peter Freund ve M. A. Rubin 11 boyuttan oluşan sıkıştırımı tüm SUSY üreticilerini koruyarak iki şekilde, 4 ya da 7 boyutu iri ölçekli boyutta bırakarak, olabileceğini göstermişlerdir. Maalesef, sıkışmazlık boyutları karşıt de Sitter boşluğuna dönüşmüştür. Bugünlerde, birçok sıkışımın mümkün olabileceği anlaşılmış ancak Freund-Rubin sıkışımı tüm Süper simetri dönüşümleri için değişmezliğini korur.Bu sayede, ilk iki sonuç 11 boyutun da eşsiz şekilde düşünülmesini sağlar, üçüncü sonuç kuramı özelleştirir ve dördüncü sonuç gözlenebilen evrenin neden dört boyutlu olduğunu açıklar.

Kuramın detaylarının çoğu Peter van Nieuwenhuizen, Sergio Ferrara ve Daniel Z. Freedman tarafından ayrıntılarıyla anlatılmıştır.

SUGRA döneminin bitişi

11 boyutlu super kütleçekimi ile ilgili heyecan birçok hatanın ve açığın bulunmasıyla çok çabuk sönmüştür ve bu modeli de başarısızlığa uğratmıştır. Problemler şunlardır:

  • Zamanı ve standart modeli kapsayan sıkışmış düzenekler süper simetri ile uyumlu değildi ve kuark ve leptonları kapsamıyordu. Başka bir öneri de 7-küre ile sıkışmış boyutları grup SO(8) ile değiştirmek ya da basık 7-küre’yi SO(5) kere SU(2) simetri grubuyla değiştirmekti.
  • Şu ana kadar, deneylerde gözlemlenen fiziksel nötrinoların Standart Modeldeki kiralite olayına göre kütlesiz olduklarına inanılıyordu ve solak oldukları söyleniyordu, sıkışmadan krital fermiyon üretmek oldukça zordu ve sıkışmış düzeneğin eşsiz olması gerekiyordu, ancak 1980’lerin sonuna kadar fizikteki eşsizlik anlaşılmaya başlanmamıştı.
  • Super kütleçekimi modelleri genel olarak dört boyutta, kaldırılması zor, ince ayar gerektiren ve gerçek olamayacak kadar büyük kozmolojik sabitlere dayanır. Bu hala bir sorundur.
  • Kuramın nicelemesi kuantum alan kuramında ölçüm anormalliklerine neden olmaktadır. Aradan geçen yıllarda fizikçiler bu anormalliklerle başa çıkmayı öğrenmişlerdir

Bu zorlukların bazılarından süper sicimleri içeren 10-boyutlu bir kurama geçiş yapılarak kaçınılabilir. Ancak 10 boyutlu bir kurama geçiş yapmak 11-boyutlu kuramın eşsizliğini yitirmesi anlamına gelir. 10-boyut kuramındaki ilk süper sicim devrimi olarak bilinen asıl ilerleme, Michael B. Green, John H. Schwarz ve David Gross tarafından 10 boyutlu super kütleçekimi modellerinde ölçüm simetrilerini ve bu simetrileri yok eden anormallere sahip sadece üç tane super kütleçekimi kuramının bulunmasıdır. Bunlar SO(32) grupları ve iki E8 kopyası olan dolaysız çarpımdır. Bugün, örneğin D-membranlarını 10-boyutlu kurama da uyarlayabileceğimizi biliyoruz.

İkinci Süper sicim Devrimi

10-boyutlu kuramlar ve kuantum tümlemeleri içeren sicim kuramları 1980’lerin sonunda ortadan kalkmıştır. Bu kuramlarda Yau’nun tahmininden çok daha fazla sıkıştırma olduğunu 23. Uluslararası Solvay Fizik Konferansında Calabi-Yaus kabul etmiştir. Hiçbiri standart modeli tam olarak verememiştir and gerekli uğraş verildiğinde farklı yollarla standart modele ulaşılabilir. Ayrıca, kimse düzensizlik kuramındaki düzenin uygulanabilirliğini anlayamamıştır. 1990’ların başında ise nispeten daha durağan bir döneme girilmiştir; ancak bazı önemli araçlar da geliştirilmiştir. Örneğin, çoğu süper sicim kuramlarının sicim ikiliklerine bağlı oldukları açıkça görülmeye başlanmış, bazıları ise zayıf sicim eşleşmesine bağlanmıştır, yani bir modeldeki fizik diğerine göre güçlü sicim eşleşmesidir. Daha sonra hepsi değişip, ikinci süper sicim devrimine dönüşmüştür. Joseph Polchinski, sicim kuramlarındaki altı yıl önce keşfettiği, p-membranlarının daha ipliklisi olan, super kütleçekimi kuramından bilinen D-membran denilen nesnelerin belirsizliğini fark etmiştir, Bu p-membranlarındaki uygulamalar karışık sicim kuramı tarafından sınırlanmamış ve hatta süper simetri sayesinde süper kütleçekimindeki p-membranlar sicim kuramının anladığının da ötesinde anlaşılabilmiştir. Düzensiz olmayan bu yeni araçla donanımlı, Edward Witten ve başka birçok bilim insanı tüm düzensiz sicim kuramlarının tek bir kuramın farklı şekillerde anlatımı ve gösterimi olduğunu söylemiş ve bu tek bir kuramı M-kuramı olarak adlandırmıştır. Dahası, M-kuramının uzun dalga sınırının 11-boyutlu ilk süper sicim devriminin yararına olan 2- ve 5-membramın eşlik ettiği süper kütleçekimine de karşı çıkmıştır. Tarihsel olarak, super kütleçekimi tam daire olmuştur. Bu sicim kuramının özelliklerini anlayabilmek için yaygın olarak kullanılan ve M-kuramı ve M-kuramının sıkışımlarındaki uzay zamanı boyutlarını düşürmek için kullanılan bir taslaktır,

Süper sicimlere ilişkin

Belirli 10-boyutlu super kütleçekimi kuramları 10-boyutlu süper sicim kuramlarının düşü enerji limitleri olarak görülür; yani kütlesiz olarak baş gösterirler. Sicim kuramlarının gerçek etkili alan kuramları nadiren mevcut olurlar. Sicim ikiliklerinden dolayı, tahmin edilen 11-boyutlu M-kuramının 11-boyutlu süper kütleçekimli düşük enerji sınırı olmak zorundadır. Ancak, bu durum sicim kuramı/m-kuramının süper kütleçekiminin tek mümkün UV bitimi olduğu anlamına gelmez.

4D N = 1 SUGRA

SUGRA gerçekliğine geçmeden önce, genel görelilik ile ilgili önemli detayları tekrarlayalım. Üzerinde (3,1)Dönüş demeti olan türevlenebilir 4 boyutlu M dağıtıcımız var. Bu esas demeti Lorentz simetrisine göre şekillenmiştir. Buna ek olarak, dağıtıcımızda dönüşü (3,1)’in altında olan fiber gerçek dört boyutlu T vektör demetimiz var Eğimi TM’den T’ye ters çevrilebilir doğrusal haritamız var. Bu harita dört boyutlu uzay zamanlar haritasıdır.Yerel Lorentz simetrisi bununla ilişkili ölçüm bağlantısına sahiptir ve buna dönüş bağlantısı denir. Aşağıdaki konu süper uzay gösterimi ile ilgili olacak ve bileşen gösterimin karşıtı olarak SUSY’nin altında eşdeğişkeni açıkça gösterilemeyecektir. Süper kütleçekimi’nin aslında birbirine eş olmayan ve burulma açısı tensörünün farklı olmasına neden olan birçok farklı versiyonu vardır, ancak önünde sonunda bir versiyondan diğerine geçerken elde edilen dönüş bağlantısı ve süper dört boyutlu uzay gösteriminin alan tanımlamasını her zaman eşitlik olarak gösterebiliriz. 4D N=1 Süper kütleçekimi’nde 4|4 gerçek türevlenebilir süper dağıtıcı M’de 4 gerçek bozonik boyut ve 4 gerçek fermiyonik boyuta sahibiz. Süper simetrik olmayan durumda olduğu gibi M’de (3,1) dönüşümüz var. M’deki T vektör demetinden ise R4|4 kadar var. Lorentz yerel grubunun altındaki T dönüşümlerinin fiberi şöyledir; dört gerçek bozonik boyut vektöre dönüşür ve dört gerçek fermiyonik boyur Majorana spinoruna dönüşür.Bu Majorana spinorları karmaşık solak Weyl spinoru ve onun sağlak bileşeni Weyl spinoru olarak tekrar ifade edilebilir. (Birbirine bağımlılardır). Bu dönüş bağlantılarına eskisi gibi sahibiz. Aşağıdaki düzenler; uzaysal (bozonik ve fermiyonik) indeksler M, N,… ile gösterilir. Bozonik uzaysal indeksler μ, ν, ... ile, solak Weyl uzaysal indeksleri α, β, ... ile ve sağlak Weyl uzaysal indeksleri , , ... ile gösterilir. T’nin fiberi için olan indeksler de benzer bir gösterime sahiptir, ancak şapkalı olarak gösterilirler; Süper dört boyutlu uzay ile gösterilirken, dönüş bağlantısı ile gösterilir ve ters süper dört boyutlu uzay ise ile gösterilir. Süper dört boyutlu uzay ve dönüş bağlatısı gerçek durumlarda mantıklı bir şekilde denklemleri sağlar; , , ve and . Eşdeğişken türevi şöyle tanımlanır;

.

Eşdeğişken dış türevi ise süper dağıtıcıların süper değerlendirilmesi ile tanımlanır. Bu demek olur ki, iki fermiyonik indeksi değiştirdiğimiz her zaman, +1 işaret faktörünü -1 yerine yazarız. R simetrilerinin yokluğu ya da varlığı isteğe bağlıdır, ancak eger R-simetrisi varsa tam süper uzayın bütünleyicisi 0’ın R-yüküne sahip olmak zorundadır ve bütünleyicinin üstü kiral süper uzay ise 2’nin R-yüküne sahip olmak zorundadır. Kiral süper alan X ‘na uyan bir süper alandır. Bu bileşeni kısıtlamak için “c” katsayılarını bütünleyici durumlara ihtiyaç duyarız; . SUSY olmayan kütleçekiminin aksine, en azından fermiyonik yönlere göre burulma açısı sıfır olamaz. Zaten, düz bir uzayda bile ‘dır. Süper kütleçekiminin bir versiyonun da burulma açısı tensörlerinin üzerindeki kısıtlamalar şöyledir;

Burada, stenografi gösterimi Weyl spinorlarının sola mı sağa mı dizileceğini gösterir. Süper dört boyutlu uzayın, , süper belirleyici faktörü bize M’in hacim faktörünü verir. Eşit bir biçimde 4|4 hacmimiz olur ve süper biçimi şöyledir; . Eğer bu süper difeomorfizmleri ölçümü , ve . olacak şekilde daha karmaşık hale getirirsek süper uzay kiralımız x ve Θ koordinatlarına sahip olur. R süper dört boyutlu uzaydan ve dönüş bağlantısından türevlenebilen yönsüz süper alan kiralidir. If f is any superfield, is always a chiral superfield. Eğer f herhangi bir süper alansa, her zaman kiral süper alandır. Kiral süper alanlı süper kütleçekimi kuramı için “X”;

K Kahler potansiyeline, W süper potansiyele ve kiral hacim faktörüne eşittir. Düz süper uzaydaki olayın aksine, Kahler ya da süper potansiyel sabitlerini eklemek artık fiziksel bir olaydır. Sabit süper kozmolojik potansiyel değişikliğine kayarken, Kahler potansiyelinin sabit değişimi etkili Planck sabitini değiştirir. Kiral süper alan X’in değeri Planck sabitine bağlıdır, bu yüzden Planck sabitini elde edebilmek için süper dört boyutlu uzayı tekrar ölçeklendirmek gerekir. Buna Einstein çerçevesi denir.

4 boyutta N = 8 Süper Kütleçekimi

N=8 süper kütleçekimi kütleçekimi ve sonlu alan sayısını içeren en simetrik kuantum alan kuramıdır.Sıfıra giden boyutları 11boyutlu süper kütleçekiminden 7’ye düşürerek bu bulunabilir. 8 süper simetri içeren bu kuram dönüş 2 ve dönüş -2 arasında 8 yarım adım olduğundan en kütleçekimsel kuramdır. Bu kuramda 2 dönüşü olan Graviton en yüksek dönüş sayısına sahiptir. Daha fazla süper simetri demek parçacıkların süper eşlerinin dönüşünün 2’den fazla olması demektir. Dönüşü 2’den fazla olan Sicim Kuramı gibi kuramlar sonsuz sayıda parçacık içerir. Stephen Hawking, Zamanın Kısa Özeti kitabında, bunun Her şeyin Kuramı olabileceğinden bahsetmiştir. Ancak ileriki yıllarda Sicim kuramında gözden düşmüştür. 21. yüzyılda da bu kuramın son olacağı ile ilgili düşünceler tekrar canlanmıştır.

Yüksek Boyutlu SUGRA

Yüksek boyutlu SUGRA genl göreliliğin yüksel boyutlu ve süper simetrik bir genellemesidir. Süper kütleçekimi 11’e kadar her sayı için denklem haline getirilebilir. Yüksel boyutlu SUGRA süper kütleçekiminin dört boyutludan daha büyük olduğuna odaklanmıştır. Spinorlardaki süper yüklerin sayısı uzay zamanındaki boyuta ve işarete bağlıdır. Süper yükler spinorlarda olur. Bu yüzden süper yüklerdeki sınırlar keyfi seçilmiş boyutun uzay zamanında sağlanamaz. Uyumlu bazı kuramsal örnekler: • 12-boyutlu iki zaman kuramı • 11-boyutlu maksimal SUGRA • 10-boyutlu SUGRA kuramları • Tip IIA SUGRA: N = (1, 1) • 11-boyuttan Tip IIA SUGRA • Tip IIB SUGRA: N = (2, 0) • Tip 1 ölçüm SUGRA: N = (1, 0) • 9 boyutlu SUGRA kuramları • 10 boyuttan maksimal 9 boyut SUGRA • T-ikiliği • N = 1 ölçüm SUGRA Dikkat çeken süper kütleçekimi kuramlarının iki daha fazla dönüşü yoktur. Bu demektir ki; aşamalarının simetrik tensörleri hiçbir alanda ikiden fazla Lorentz dönüşümü içermez. Ancak, yüksek dönüş kuramlarındaki etkileşim tutarlılığı oldukça aktif bir alanın ilgisini çeker.

Kaynakça

İngilizce Vikipedi

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Del işlemcisi</span>

Yöney analizinde del işlemcisi, 3 boyutlu Kartezyen koordinatlarda nabla işlemcisine denk gelir ve simgesiyle gösterilir.

<span class="mw-page-title-main">M teorisi</span>

İngilizce'deki açılımı membrane theory yani zar kuramıdır. Güncel paradigmanın tanımlamalarına göre, bir kuram olmadığından baş harfi ile anılır. Beş farklı sicim kuramını birleştirme çabasıdır ve her şeyin kuramı olmaya en muhtemel adaydır.

<span class="mw-page-title-main">Kütle merkezi</span>

Fizikte, uzaydaki ağırlığın dağılımının ağırlık merkezi, birbirlerine göre olan ağırlıkların toplamlarının sıfır olduğu noktadır. Ağırlık dağılımı, ağırlık merkezi etrafında dengelenir ve dağılan ağırlığın kütle pozisyon koordinatlarının ortalaması onun koordinatlarını tanımlar. Ağırlık merkezine göre formüle edildiği zaman mekanikte hesaplamalar basitleşir.

<span class="mw-page-title-main">Beta dağılımı</span>

Olasılık kuramı ve istatistikte, beta dağılımı, [0,1] aralığında iki tane pozitif şekil parametresi ile ifade edilmiş bir sürekli olasılık dağılımları ailesidir. Çok değişkenli genellemesi Dirichlet dağılımıdır.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

Yılmaz kütleçekim kuramı, Türk teorik fizikçi Hüseyin Yılmaz (1924-2013) tarafından ortaya atılan ve daha sonra birkaç kişinin de birlikte katkı verdiği, düşük çekimli alanlarda Einstein'ın genel görelilik kuramı ile örtüşen ancak olay ufkuna izin vermeyen dolayısıyla da karadelik içermeyen klasik alanlı bir çekim kuramıdır.

<span class="mw-page-title-main">Sicim kozmolojisi</span>

Sicim kozmolojisi, ilk kozmolojinin sorularını sicim kuramındaki eşitlikleri uygulayarak çözmeye çalışan yeni bir alandır.Çalışmaların bağlantılı bölgesi brane kozmolojisidir. Bu yaklaşım sicim kuramının şişme kozmolojik modelinden türetilebilir, bu sayede ilk büyük patlama senaryolarına kapı açılmıştır. Fikir, eğimli bir arka planda bozonik sicim özelliği ile bağlantılıdır, düzgün olmayan sigma modeli olarak bilinir. Bu modelin ilk işlemleri beta işlevi olarak gösterilir, modelin sürekli ölçünü bir enerji düzeyinin işlevi olarak nitelendirir, Ricci tensörü ile orantılı olmakla birlikte Ricci akışına da mahal vermiştir. Bu model konformal değişmeze sahip olduğundan mantıklı bir kuantum alan kuramı olarak tutulmalı, beta işlevi ise ardından, hemen sıfır üreten Einstein alan eşitliği olmalıdır. Einstein’ın eşitlikleri bir şekilde yersiz görünse de, bu sonuç kesinlikle iki-boyutlu modelin daha fazla boyutlu fizik üretebileceğini göstermesi açısından dikkat çekicidir. Buradaki ilgi çekici nokta ise sicim kuramı gereksinim olmasa da düz bir arka plandaki tutarlıkla 26 boyut olarak formulize edilebilir. Bu Einstein’ın eşitliklerinin altında yatan fiziğin konformal alan kuramı ile açıklanabileceğine dair ciddi bir ipucudur. Aslında, bu sicim kozmolojisi için şişmeci bir evrene sahip olduğumuza dair bir kanıtımız olduğuna işarettir.Evrenin evriminde, şişme evresinden sonra, bugün gözlemlenen genişleme Firedmann eşitliklerinde tam anlamıyla tanımlanmıştır. İki farklı evre arasında pürüzsüz bir geçiş beklenir. Sicim kozmolojisi, geçişi açıklamakta zorluk çeker. Bu sözlükte zarif çıkış problemi olarak bilinir. Şişmeci kozmoloji skaler alanın varlığının şişmeyi zorladığını ima eder. Sicim kozmolojisinde bu durum dilaton alanına mahal verir.. Bu skaler ifade, düşük enerjilerin efektif kuramı olan skaler alanın bozonik sicimin tanımına girer. Bu eşitlikler Brans-Dicke kuramındakilere benzer. Nicel çözümlenimler boyutların kritik sayısını, (26), dörde düşürmeye çalışır. Genel olarak, Friedmann eşitliklerinden rastgele sayıda boyut elde edilebilir. Başka bir durum ise boyutların kesin sayısı etkili dört boyut kuramı ile çalışarak sıkıştırılmış evrenleri üretir. Sıkıştırılmış boyutlarda skaler alanların oluştuğu Kaluza-Klein kuramı buna bir örnektir. Bu alanlara modili denir.

Landau Kutbu veya diğer adıyla Moskova Sıfırı olarak bilinen, kuantum (nicem) alan kuramının sonsuz olduğu bağlaşım sabitindeki momentum (devinim) ölçeğidir. Bu olasılık Lev Landau ve meslektaşları tarafından belirtilmiştir. Bu bağlaşım sabiti, yeniden boylandırım grubun arkasında yatan temel fikirlerden olan momentum (devinim) ölçeğine dayanmaktadır.

Modern kuantum (nicem) mekaniğinden önce gelen eski kuantum (nicem) kuramı, 1900 ile 1925 yılları arasında elde edilen sonuçların birikimidir. Bu kuramın, klasik mekaniğin ilk doğrulamaları olduğunu günümüzde anladığımız bu kuram, ilk zamanlar tamamlanmış veya istikrarlı değildi. Bohr modeli çalışmaların odak noktasıydı. Eski kuantum döneminde, Arnold Sommerfield, uzay nicemlenimi olarak anılan açısal momentumun (devinimin) z-bileşkesinde nicemlenim yaparak önemli katkılarda bulunmuştur. Bu katkı, electron yörüngelerinin dairesel yerine eliptik olduğunu ortaya çıkarmıştır ve kuantum çakışıklık kavramını ortaya atmıştır. Bu kuram, electron dönüsü hariç Zeeman etkisini açıklamaktadır.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

Fizikte, Kuantum mekaniğinde, eşevreli hal klasik harmonik salıngaca benzeyen kuantum harmonik salıngacının nicel hareketidir. Kuantum dinamiğinin Erwin Schrödinger tarafından Scrödinger denklemlerine çözüm ararken 1926 yılında türetilen ilk örneğidir. Örneğin, eşevre hali parçacığın salınımsal hareketini açıkları. Bu haller, John R. Klauderin ilk makalelerinde alçalma operatörü ve fazla tamamlanmış aile teşkili olarak özvektör adında tanımlanmıştır. Eşevre halleri,[ışığın kuantum kuramında ve diğer bozonik kuantum alanlarında Roy J. Glauber’in 1963 yılındaki çalışmaları tarafından geliştirilmiştir. Salınan alanın eşevre hali, klasik sinüs dalga hareketine benzeyen, devamlı lazer dalgası gibi olan kuantum halidir. Ancak, eşevre hali kavramı kayda değer biçimde genellenmiş ve sinyal sürecini niceleme, görüntü işleme alanlarında matematiksel fizikte ve uygulamalı matematik oldukça geniş ve önemli bir konu olmuştır. Bu hususta, kuantum harmonik salıngacı ile bağlantılı eşevreli haller genel olarak standart eşevreli haller ya da Gauss işlevi halleri olarak anılır.

Paramanyetik bir malzemede, malzemenin mıknatıslanması genel olarak uygulanan manyetik alanla orantılıdır. Fakat eğer malzeme ısıtılırsa, bu oran düşer: Belirli bir sıcaklığa kadar, mıknatıslanma sıcaklıkla ters orantılıdır. Bu kavram “Curie Yasası” tarafından kapsanmaktadır:

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

<span class="mw-page-title-main">Elektrozayıf etkileşim</span>

Parçacık fiziğinde elektrozayıf etkileşim, doğanın bilinen iki veya dört temel etkileşiminin birleşimin bir tanımıdır: elektromanyetizm ve zayıf etkileşim. Her gün düşük enerjilerde, bu iki kuvvet çok farklı oluşsa da, teori modelleri aynı kuvvetin iki farklı etkisi gibidir. Yukarıdaki birleştirme enerjisi, yaklaşık 100 GeV, tek bir elektrozayıf kuvvet oluşturabilir. Bu yüzden, eğer evren yeterince sıcaksa (Big Bang'den kısa bir sonra olan bir sıcaklık ortalama 1015 K), elektromanyetik kuvvet ve zayıf kuvvet birleşmiş bir elektrozayıf kuvvete dönüşür. Elektrozayıf dönem boyunca, zayıf kuvvet güçlü kuvvetten ayrılır. Kuark dönem boyunca, elektrozayıf kuvvet elektromanyetik ve zayıf kuvvetten ayrılır.

Bessel polinomları, matematikteki ortogonal polinomların bir dizisidir. Bessel polinomlarıyla ilgili birbirinden farklı ama birbiriyle yakından ilişkili çok sayıda tanım vardır. Matematikçiler tarafından tercih edilen tanım şu seriyle verilmektedir:

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.