İçeriğe atla

Rydberg atomu

Figür 1: Lityumun enerji seviyeleri yörüngesel açısal döndürümün en düşük 3 değerinin ilk iyonlaşma enerjisindeki yakınsamasının Ryberg serilerini gösterir.

Rydberg atomu çok yüksek temel nicem sayılı bir veya iki elektrona sahip bir uyarılmış atomdur[1] Bu atomlar elektrik ve manyetik alana abartılı tepkiler vermeyi de içinde barındıran, uzun bozunma devri ve yaklaşık elektron dalgafonksiyonları, bazı şartlar altında çekirdekler etrafındaki elektronların klasik yörüngeleri gibi[2] kendilerine has birçok özelliğe sahiptir.[3] Çekirdek elektronları dış elektronları çekirdeğin elektrik alanından kalkanlar, öyle ki belirli bir mesafeden hidrojen atomundaki bir elektronun tecrübe ettiği gibi elektrik potansiyeli belirleyicidir.[4]

Eksiklikleri olmasına rağmen, Bohr Atom Modeli bu özellikleri açıklamak için oldukça yararlıdır. Klasik r yarıçaplı dairesel bir yörüngeki elektron, +e yüklü bir Hidrojen atomu taneciği gibi, Newton'un ikinci yasasına uyar:

k = 1/(4πε0).

Yörüngesel döndürüm ħ biriminde nicelenmiştir:

.

Bu iki eşitliği birleştirmek temel nicem sayısı n cinsinden yörüngesel yarıçap için Bohr açılımlarına yol açar:

Rydberg Atomunun neden bu şekilde kendine has özellikleri olduğu artık gayet açıktır: yörünge yarıçapı n2 ile şekillenir (n = 137 durumundaki hidrojen ~1 µm atomik yarıçapa sahiptir) ve geometrik kesit n4 ile şekillenir. Rydberg Atomu gevşek bağ değerlik elektronları ile oldukça geniş olduğundan dış alanların çarpışmalarıyla kolayca uyarılabilir ya da iyonize edilebilir.

Rydberg elektronunun bağ enerjisi 1/r ile orantılı olduğu için ve 1/n2 ile azaldığından, enerji seviyesi boşluklama 1/n3 ile azalarak ilk iyonlaşma enerjisinde sürekli daha yakın boşluk seviyeleri yakınsanmasına sebebiyet verir. Bu yakınca boşluklanmış Rydber durumları, Rydberg serileri olarak adlandırılır. Figür 1 lityumun yörüngesel açısal döndürümünün en düşük üç enerji seviyesini gösterir.

Tarihçe

Raydberd serilerinin vardılığı ilk kez 1885'te Johann Balmer'in atomik hidrojendeki geçişle ilişkili ışığın dalgaboyu için basit deneysel formülü keşfi ile gösterilmiştir. Üç yıl sonra İsveçli fizikçi Johannes Rydberg Balmer formülünün Rydberg formülü olarak bilinen daha genel ve sezgisel bir şeklini sundu. Bu formül çok daha yakın boşluklanmış enerji seviyelerinin sınırlı bir alandaki yakınsamasının sonsuz serileri olduğunu göstermiştir.[5]

Bu seriler Niels Bohr ve onun ayrık enerji seviyelerinin gözlemlenmesini sağlayan açısal döndürümün nicelenmiş değerli Hidrojen atomu yarı klasik modeli ile niteliksel olarak 1913'te açıklanmıştır.[6] Gözlenen tayfın tamamen niteliksek türetimi 1926'da Werner Heisenberg ve diğerleri tarafından nicem mekaniğinde yapılan gelişmeler sayesinde Wolfgang Pauli tarafından 1926'da türetilmiştir.

Üretim yöntemleri

Hidrojen benzeri atomların tek gerçek sabit durumu temel durum n = 1'dir. Rydberg durumları çalışması temel durum atomlarını geniş bir n değeri ile uyarmak için güvenilir bir teknik gerektirir.

Elekton çarpma uyarımı

Rydberg atomlarındaki önceki deneysel çalışma temel hal atomlarındaki hızlı elektron olaylarının hizalanmış ışınlarının kullanımına bel bağlamıştır.[7] Esnek olmayan dağıtma işlemleri çok yüksek uzanımlı Rydberg durumlarını da içeren farklı durumların geniş menzillerine uyaran atomların iç enerjilerini artırmak için elektronun kinetik enerjisini kullanabilir,

.

Elektron başlangıçtaki kinetik enerjisinin bütün rastgele miktarlarını muhafaza edebildiği için bu işlem her zaman farklı enerjilerin geniş yayılımları ile sonuçlanır.

Yük değişimi uyarımı

Önceki Rydberg atom deneylerinin bir diğer baş dayanağı iyon ışınları ile yüksek uyarık atomların ışın oluşumlarında sonuçlanan diğer türlerin yüksüz atom popülasyonları arasındaki yük değişimine bel bağlamasıdır.,[8]

.

Tekrar, etkileşimin kinetik enerjisi bileşenlerin son iç enerjilerine katkıda bulunduğu için bu teknik geniş menzilli enerji seviyeleri oluşmasına neden olur.

Optik uyarım

Ayarlanabilir renk lazerlerinin gelişi (1970'ler) uyarılmış atom popülasyonları üzerinde çok daha fazla kontrole olanak sağladı. Bağlı fotonun optik uyarımı hedef atom tarafından emilir ve son durum enerjisi belirlenir. Tekil durum oluşturmaktaki problem, Rydberg atomlarının tek enerjili popülasyonlarının bir şekilde lazer çıkışı tekrarlanırlığının kesin kontrolünün bir şekilde basit promleme dönüşmesidir,

.

Optik uyarımın bu şekli genellikle alkali metallerin deneyleriyle sınırlıdır çünkü diğer türlerin bağ enerjileri çoğu lazer sistem için fazlasıyla yüksektir.

Yüksek değerlik elektron bağ enerjili atomlar için (yüksek ilk iyonlaşma enerjisine eşittir) Rydberg serilerinin uyarılmış halleri alışılagelmiş lazer sistemleri ile erişilmezdir. İlk çarpımsal uyarım final durumunu seçmek için optik uyarıma izin veren bir enerji düşüşü sağlayabilir. İlk adımın geniş menzilli ortalama durumları uyarabiliyor olmasına rağmen optik uyarım işleminin doğal hassasiyeti lazer ışınlarının sadece seçilmiş son duruma uyarılan belirli bir durumdaki belirli alt atomlarla etkileşime girebileceğini ifade eder.

Hidrojensel potansiyel

Figure 2. Farklı bir atomun Rydberg halindeki hidrojen atomu gerilimi kıyaslaması. Temiz bir etki yaratabilmek için geniş bir çekirdek kutuplaştırıcısı kullanılmıştır. Siyah eğri hidrojen atomunun 1/r'lik Coloumbik gerilimi gösterirken kesikli kırmızı eğri ise 1/r4 'lük iyon çekirdek kutuplaşma terimi içermektedir.

Rydberd halindeki bir atom iyon çekirdekten uzaktaki geniş bir yörüngede değerlik elektronlarına sahiptir; dış elektronların neredeyse hidrojensel hissettiği bir yörünge. Coulomb gerilimi Z protonlu bir çekirdek ve Z-1 elektronlu düşük elektron kabukları içeren bir sıkışık iyon çekirdekten kaynaklanır. Küresel simetrik bir elektronun Coulomb gerilimi potansiyel enerjisi:

.

Dış elektron tarafından görülen etkili gerilim benzerliği hidrojen gerilimine Rydberg durumlarının özelliklerini tanımlar ve rastlantısal ilke sınırlamalarında elektron dalgafonksiyonlarını neden klasik yörüngelere yaklaşık olduğunu açıklar.[2] Diğer bir deyişle, elektronun yörüngesi güneş sistemindeki gezegenlerin yörüngelerine benzer. Modası geçmiş ancak görsel olarak kullanışlı olan Bohr ve Rutherfor atom modelleri göstermek için kullanılır.

Potansiyel enerjiye ek terimler eklenerek vasıflandırılabilecek üç tane not edilebilir istisna vardır:

  • Bir atom karşılaştırılabilir yörünge yarıçapları ile yüksek uyarılmış hallerde 2 veya daha çok elektron bulundurabilir. Bu durumda elektron-elektron etkileşimi hidrojen potansiyelinden önemli türetimlere yükselim verir.[9] Çoklu Rydberg durumundaki bir atom için ek terim, Uee, yüksek uyarımlı elektron çiftlerinin toplamlarını içerir:
.
  • Eğer değerlik elektronu çok düşük bir açısal döndürüme sahipse, potasiyele 1/r4 çekirdek kutuplaştırma terimi yükselimi vererek iyom çekirdeği kutuplaştırmaya çok yakın geçebilir.[10] Uyarılmış çiftkutup ve üretilen yük her zaman etkileyicidir yani bu katkı negatiftir,
,
αd çiftkutup kutuplaşabilitesidir. Figür 2 kutuplaştırma teriminin çekirdeğe yakın gerilimi nasıl değiştirdiğini gösterir.
  • Eğer ki dış elektron iç elektron kabuğunu delerse, daha çok çekirdek yükü görür ve daha çok kuvvet hisseder. Genel olarak potansiyel enerji değişimi hesaplaması kolay değildir ve iyon çekirdeğin geometrik bilgisi temel alınmalıdır.[11]

Nicem-mekaniksel detaylar

Figür 3. Yörüngesel açısal döndürümün n=5 yarı klasik yörüngeleri için bütün değerler. Siyah nokta atomik çekirdeğin konumunu temsil eder.

Anormal derecede yüksek n'li bir nicem mekaniksel hal değerlik elektronları yüksek enerjili ve elektron yörüngeli ve düşük bağ enerjili önceden işgal edilmemiş elektron yörüngelere uyarılmış bir atomu belirtir. Hidrojenin bağ enerjisi:

,

Ry = 13.6 eV, Rydberg sabiti. Yüksek n değerli düşük bağ enerjisi Rydberd durumlarının neden iyonlaşmaya yatkın olduğunu açıklar.

Rydberg durumu için potansiyel enerjiye ek koşullar, hidrojensel Coulomb potansiyel enerjinin bağ enerjisi anlatımına nicem bozukluğuna, δl, giriş gerektirmesi:[4]

.

Elektron dalgaboyları

Yüksek yörüngesel açısal döndürümlü Rydberg durumlarının uzun ömürleri dalga fonksiyonlarının örtünümü cinsinden açıklanabilir. Yüksek l durumundaki bir elektronun dalgafonksiyonu (yüksek açısal döndürüm, dairesel yörünge) iç elektronların dalgafonksiyonları ile küçük bir örtünüme sahiptir ve bu yüzden göreceli tedirgindir.

Hidrojensel gerilimli bir atom olan Rydberg atomunun tanımı için üç istisna, alternatif olarak atomik Hamiltonian'ın ek terimleri olarak vasıflanırılan nicem mekaniksel tanım:

  • Eğerki bir ikinci elektron ni durumuna uyarılmışsa, enerjik açıdan dış elektron no durumuna yaklaşır, böylece dalga fonksiyonu neredeyse ilk durumunki kadar genişler. (bir çift Rydber durumu). Bu ni no'a yaklaştıkça görünür ve iki elektronun yörünge boyutlarının alakalanmasına yol açar;[9] bu durum çoğu zaman dairesel münasebet olarak adlandırılır.[1] Bir elektron-elektron itme terimi atomik Hamiltonian'da bulunmalıdır.
  • İyon çekirdeğin kutuplaşması iki dış elektronun hareketli arasında bir açısal münasebete sebebp olan eşyönsüz bir gerilim oluşturur.[1][12] Bu küresel olmayan simetrik gerilimden kaynaklı bir medcerizsel kilit etkisi olarak düşünülebilir. Bir çekirdek kutuplaşma terimi atomik Hamiltonian'da bulunmalıdır.
  • Düşük açısal döndürüm durumundaki bir dış elektronun dalga fonksiyonu iç elektron kabuklarında ve çekirdeğin tam yüküyle yerelleştirilir.[11] Figür 3 düşük l durumlarının iyon çekirdeği gerilimsel olarak delen taneciğe yakın geçişini gösteren bir elektron yörüngesindeki açısal döndürüm durumlarının yarı klasik etkileşimlerini gösterir. Bir çekirde delimi terimi Hamiltonian'da bulunmalıdır.

Dış alanlardaki Rydberg atomları

Stark-map for hydrogen
Figür 4. n=15 yakınlarındaki elektrik alandaki hidrojenin hesaplanmış enerji seviyesi.[13] Potansiyel enerji hidrojen için Stark durumları ile eşleme yapmayan 1/r Coulomb gerilimli elektronik Hamiltonian'da bulunmuştur.
Stark-map for lithium
Figür 5. n=15 yakınlarındaki elektrik alandaki lütyumun hesaplanmış enerji seviyesi.[13] Enerji seviyelerinin kaçınılmış çaprazlamaları ve farklı Stark durumlarının eşlemesine yol açan elektronik Hamiltonian'a ek terimler ekleyen Rydberg elektronu tarafından delinebilen ve kutuplaştırılabilen iyon çekirdeğin varlığı.

Bir Rydberg atomundaki elektron ve iyon çekirdek arasındaki büyük ayrım çok büyük bir elektrik çiftkutup döndürümünü mümkün kılar, d. Bir elektrik alandaki elektrik çiftkutpunun varlığıyla ilişkilendirilmiş, atom fiziğinde Stark itmesi olarak bilinen bir enerjy vardır,

Yerel elektrik alan vektöründeki bir çiftkutbun yansıma işaretine bağlı olarak bir durum alan sertliğini artıran ya da azaltan bir enerjiye sahip olabilir. Rydberg serilerindeki bitişik n-seviyeleri arasındaki dar başluklama bu durumun göreceli yalın alan sertliklerine soysuzlaşma olarak yaklaşabileceği anlamına gelir. Çaprazlamadaki düşünsel alan sertliği  Inglis-Teller sınırlamalarıyla verilen durumlar arasında eşleme olmaması varsayımında görünür,[14]

Hidrojen atomunda saf 1/r Coulomb gerilim figür 4'te gösterildiği gibi gerçek çaprazlama ile sonuçlanan n-çoğalımlarından Stark durumları ile eş olurturmaz. Potansiyel enerjideki ek terimlerin varlığı lityum için Figür 5.'te gösterilen kaçınılmış çaprazlamalarda sonuçlanan eşlemeye yol açar.

Uygulamalar ve diğer araştırmalar

Mıknatısiten etkilerin soruşturulması

Rydberg atomlarının büyük boyutları ve düşük bağ enerjileri yüksek mıknatıssal duyarlılığa sebep olur, Χ. Çok geniş mıknatısiten itmeleri uygulayan  Rydberg atomlarında temel halde etkilerin belirlenmesi imkânsızdır çünkü mıknatısitim etkileri yörünge alanıyla ölçeklenir ve alan yarıçapın karesiyle orantılıdır, (An4).[15]

Sıkyükündeki Rydberg atomları

Elektronların ve pozitif iyonların tekrar birleştirilmesinden ötürü Rydberd atomları sıkyükün içinde bolca oluşur. Yüksek kinetik enerjili elektronların ve pozitifi iyonların tekrar birleştirilmesi genelde kendiliğinden iyonlaştırıcı Rydberd durumlarını oluşturken düşük enerjili tekrar birleştirim makul durağan Rydberg atomlarıyla sonuçlanır. Rydberg atomlarının geniş boyları, tedirginliğe duyarlılıkları ve elektrik ve manyetik alanlar tarafıntan iyonlaştırılmaları sıkyükünün özelliklerini belirlemek için önemli birer etkendir.[16]

Rydberg atomlarının yoğunlaşmaları uzun ömürlü salkımlarda gözlenen Rydberg maddesini oluşturur. Salkımların uzun ömürlü olmasına sebebp olan birleşik değerlik elektronları tarafından yoğunlaşmada oluşturulan düzensiz elektron sıvısındaki değişim münasebeti etkileri tarafından Rydberg maddesindeki uyarımsızlık büyük ölçüde engellenmiştir.[17]

Uzaysal fizikte Rydberg atomları

Rydberg atomlarının yıldızlararası uzayda yaygın ve dünyadan gözlenebilir olması tavsiye edilmiştir.[18] Yıldızlararası gaz bulutlarının yoğunlukları çoğu büyüklük sıralamasında dünya üzerindeki en iyi vakum uygulamarından bile daha düşük olduğu için Rydberg durumları çarpışmalar tarafından yok edilmeden uzun bir süre sürekliliği koruyabilir.

Sertçe etkileşen sistemler

Büyük boylarından dolayı, Rydberg atomları çok büyük elektrik çiftkutup döndürümleri segileyebilir. Tedirginlik teorisi kullanılarak yapılan hesaplamalar iki yakın Rydberg atomu arasındaki sert etkileşimlerde sonuçlandığını gösterir. Göreceli uzun ömürleri ile birleştirilen etkileşimlerin uyumlu kontrolleri onları nicem bilgisayarlarını anlamak için uygun birer aday haline getirir.[19] Bir iki-qubit geçit deneysel olarak ulaşılmamıştır ancak iki belirgin atom arasındaki ve mesoskopik örneklerindeki tümleşik uyarımların gözlemleri ve şartlı canlılıklar rapor edilmiştir.[20][21][22] Sert etkileşimli Rydberg atomları ayrıca onları ilginç bir çalışma haline getiren nicem kritik davranışın bir özelliğidir.[23]

Klasik benzeşme

Figür 6. Durgunyük elektik alanındaki bir Rydberg atomu için Stark-Coulomb geirlimi. Böyle bir gerilimdeki elektron açısal devinimini değiştiren bir buru hisseder.
Figür 7. x-yönündeki E = -3 x 106 V/m'lik elektrik alandaki hidrojen atomundaki elektronun gezinimi.

Basit bir 1/r potansiyel kapalı bir Kepler eliptik yörüngede sonuçlanır. Dış bir elektrik alanın varlığında Raydberg atomları kendilerini alanın tedirginliğine karşı çok duyarlı hale getiren çok büyük elektrik çiftkutup döndürümleri edinebilirler. Figür 6 atomik fizikte Stark alanı olarak bilinen bir dış elektrik alanın potansiyelin geometrisini nasıl değiştirdiğinin uygulamasını gösterir, önemli ölçüde elektronun davranışını değiştirir. Kuvvet hiçbir zaman konum vektörüne paralel olmadığı için Coulombik gerilim hiçbir buru uygulamaz.

,
.

With the application of a static electric field, the electron feels a continuously changing torque. The resulting trajectory becomes progressively more distorted over time, durgunyük elektik alanının bir uygulaması ile elektron sürekli değişen bir buru hisseder. Sonuç gezingesi sürekli olarak bir bozunuma uğrar, anlık olarak tam menzilli açısal devinim L = LMAX'tan sabit bir çizgi L=0' a L = -LMAX'la zıt duyudaki ilk yörüngeye ilerler.[24]

Açısal devinimdeki salınımın zaman sürekliliği (figür 7 gezinimi tamamlayacak zaman ), Rydberg atomunun klasik doğasının gösterildiği dalgafonksiyonunu ilk durumuna döndüren nicem mekaniksel tahmin edilmiş sürekliliği ile neredeyse tamamen uyar.

Ayrıca bakınız

  • Ağır Rydberg sistemi
  • Eski Nicem Teorisi
  • Nicem Kaosu
  • Rydberg molekülü

Kaynakça

  1. ^ a b c Gallagher, Thomas F. (1994). Rydberg Atoms. Cambridge University Press. ISBN 0-521-02166-9. 
  2. ^ a b J. Murray-Krezan (2008). "The classical dynamics of Rydberg Stark atoms in momentum space". American Journal of Physics. 76 (11). ss. 1007-1011. Bibcode:2008AmJPh..76.1007M. doi:10.1119/1.2961081.  Kaynak hatası: Geçersiz <ref> etiketi: "Classical" adı farklı içerikte birden fazla tanımlanmış (Bkz: )
  3. ^ Metcalf Research Group (8 Kasım 2004). "Rydberg Atom Optics". Stony Brook University. 15 Haziran 2009 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Temmuz 2008. 
  4. ^ a b Nolan, James (31 Mayıs 2005). "Rydberg Atoms and the Quantum Defect". Davidson College. 6 Aralık 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Temmuz 2008. 
  5. ^ I. Martinson and L. J. Curtis (2005). "Janne Rydberg – his life and work". Nuclear Instruments and Methods in Physics Research Section B. 235 (1–4). ss. 17-22. Bibcode:2005NIMPB.235...17M. doi:10.1016/j.nimb.2005.03.137. 
  6. ^ "The Bohr Model". University of Tennessee, Knoxville. 10 Ağustos 2000. 6 Aralık 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Kasım 2009. 
  7. ^ J. Olmsted (1967). "Excitation of nitrogen triplet states by electron impact". Radiation Research. 31 (2). ss. 191-200. doi:10.2307/3572319. JSTOR 3572319. PMID 6025857. 
  8. ^ M. Haugh (1966). "Electronic excitation accompanying charge exchange". Journal of Chemical Physics. 44 (2). ss. 837-839. Bibcode:1966JChPh..44..837H. doi:10.1063/1.1726773. 
  9. ^ a b I. K. Dmitrieva and G. I. Plindov (1993). "Energies of Doubly Excited Sates. The Double Rydberg Formula". Journal of Applied Spectroscopy. 59 (1–2). ss. 466-470. Bibcode:1993JApSp..59..466D. doi:10.1007/BF00663353. 
  10. ^ L. Neale and M. Wilson (1995). "Core Polarization in Kr VIII". Physical Review A. 51 (5). ss. 4272-4275. Bibcode:1995PhRvA..51.4272N. doi:10.1103/PhysRevA.51.4272. PMID 9912104. 
  11. ^ a b C. E. Theodosiou (1983). "Evaluation of penetration effects in high-l Rydberg states". Physical Review A. 28 (5). ss. 3098-3101. Bibcode:1983PhRvA..28.3098T. doi:10.1103/PhysRevA.28.3098. 
  12. ^ T. A. Heim and A. R. P. Rau (1995). "Excitation of high-lying pair-Rydberg states". Journal of Physics B. 28 (24). ss. 5309-5315. Bibcode:1995JPhB...28.5309H. doi:10.1088/0953-4075/28/24/015. 
  13. ^ a b M. Courtney; Spellmeyer, Neal; Jiao, Hong; Kleppner, Daniel (1995). "Classical, semiclassical, and quantum dynamics of lithium in an electric field". Physical Review A. 51 (5). ss. 3604-3620. Bibcode:1995PhRvA..51.3604C. doi:10.1103/PhysRevA.51.3604. PMID 9912027. 
  14. ^ D.R. Inglis and E. Teller (1939). "Ionic Depression of Series Limits in One-Electron Spectra". Astrophysical Journal. Cilt 90. s. 439. Bibcode:1939ApJ....90..439I. doi:10.1086/144118. 
  15. ^ J. Neukammer; Rinneberg, H.; Majewski, U. (1984). "Diamagnetic shift and singlet-triplet mixing of 6snp Yb Rydberg states with large radial extent". Physical Review A. 30 (2). ss. 1142-1144. Bibcode:1984PhRvA..30.1142N. doi:10.1103/PhysRevA.30.1142. 
  16. ^ G. Vitrant; Raimond, J M; Gross, M; Haroche, S (1982). "Rydberg to plasma evolution in a dense gas of very excited atoms". Journal of Physics B. 15 (2). ss. L49-L55. Bibcode:1982JPhB...15L..49V. doi:10.1088/0022-3700/15/2/004. 
  17. ^ E. A. Manykin (2006). "Rydberg matter: properties and decay". Proceedings of the SPIE. 6181 (5). ss. 1-9. doi:10.1117/12.675004. 
  18. ^ Y. N. Gnedin; Mihajlov, A.A.; Ignjatović, Lj.M.; Sakan, N.M.; Srećković, V.A.; Zakharov, M.Yu.; Bezuglov, N.N.; Klycharev, A.N. (2009). "Rydberg atoms in astrophysics". New Astronomy Reviews. 53 (7–10). ss. 259-265. arXiv:1208.2516 $2. Bibcode:2009NewAR..53..259G. doi:10.1016/j.newar.2009.07.003. 
  19. ^ D. Jaksch; Cirac, J. I.; Zoller, P.; Côté, R.; Lukin, M. D.; Lukin, MD (2000). "Fast Quantum Gates for Neutral Atoms". Physical Review Letters. 85 (10). ss. 2208-11. arXiv:quant-ph/0004038 $2. Bibcode:2000PhRvL..85.2208J. doi:10.1103/PhysRevLett.85.2208. PMID 10970499. 
  20. ^ A. Gaëtan; Miroshnychenko, Yevhen; Wilk, Tatjana; Chotia, Amodsen; Viteau, Matthieu; Comparat, Daniel; Pillet, Pierre; Browaeys, Antoine; Grangier, Philippe (2009). "Observation of collective excitation of two individual atoms in the Rydberg blockade regime". Nature Physics. 5 (2). ss. 115-118. arXiv:0810.2960 $2. Bibcode:2009NatPh...5..115G. doi:10.1038/nphys1183. 
  21. ^ E. Urban; Johnson, T. A.; Henage, T.; Isenhower, L.; Yavuz, D. D.; Walker, T. G.; Saffman, M. (2009). "Observation of Rydberg blockade between two atoms". Nature Physics. 5 (2). ss. 110-114. arXiv:0805.0758 $2. Bibcode:2009NatPh...5..110U. doi:10.1038/nphys1178. 
  22. ^ R. Heidemann; Raitzsch, Ulrich; Bendkowsky, Vera; Butscher, Björn; Löw, Robert; Santos, Luis; Pfau, Tilman (2007). "Evidence for Coherent Collective Rydberg Excitation in the Strong Blockade Regime". Physical Review Letters. 99 (16). s. 163601. arXiv:quant-ph/0701120 $2. Bibcode:2007PhRvL..99p3601H. doi:10.1103/PhysRevLett.99.163601. PMID 17995249. 
  23. ^ H. Weimer; Löw, Robert; Pfau, Tilman; Büchler, Hans Peter (2008). "Quantum Critical Behavior in Strongly Interacting Rydberg Gases". Physical Review Letters. 101 (25). s. 250601. arXiv:0806.3754 $2. Bibcode:2008PhRvL.101y0601W. doi:10.1103/PhysRevLett.101.250601. PMID 19113686. 
  24. ^ T. P. Hezel (1992). "Classical view of the Stark effect in hydrogen atoms". American Journal of Physics. 60 (4). ss. 324-328. Bibcode:1992AmJPh..60..324H. doi:10.1119/1.16875. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Atom</span> tüm maddelerin kimyasal ve fiziksel özelliklerini taşıyan en küçük yapıtaşı

Atom veya ögecik, bilinen evrendeki tüm maddenin kimyasal ve fiziksel niteliklerini taşıyan en küçük yapı taşıdır. Atom Yunancada "bölünemez" anlamına gelen "atomos"tan türemiştir. Atomus sözcüğünü ortaya atan ilk kişi MÖ 440'lı yıllarda yaşamış Demokritos'tur. Gözle görülmesi imkânsız, çok küçük bir parçacıktır ve sadece taramalı tünelleme mikroskobu vb. ile incelenebilir. Bir atomda, çekirdeği saran negatif yüklü bir elektron bulutu vardır. Çekirdek ise pozitif yüklü protonlar ve yüksüz nötronlardan oluşur. Atomdaki proton sayısı elektron sayısına eşit olduğunda atom elektriksel olarak yüksüzdür. Elektron ve proton sayıları eşit değilse bu parçacık iyon olarak adlandırılır. İyonlar oldukça kararsız yapılardır ve yüksek enerjilerinden kurtulmak için ortamdaki başka iyon ve atomlarla etkileşime girerler.

<span class="mw-page-title-main">Elektron</span> Temel elektrik yüküne sahip atomaltı parçacık

Elektron, eksi bir temel elektrik yüküne sahip bir atomaltı parçacıktır. Lepton parçacık ailesinin ilk nesline aittir ve bileşenleri ya da bilinen bir alt yapıları olmadığından genellikle temel parçacıklar olarak düşünülürler. Kütleleri, protonların yaklaşık olarak 1/1836'sı kadardır. Kuantum mekaniği özellikleri arasında, indirgenmiş Planck sabiti (ħ) biriminde ifade edilen, yarım tam sayı değerinde içsel bir açısal momentum (spin) vardır. Fermiyon olmasından ötürü, Pauli dışarlama ilkesi gereğince iki elektron aynı kuantum durumunda bulunamaz. Temel parçacıkların tamamı gibi hem parçacık hem dalga özelliklerini gösterir ve bu sayede diğer parçacıklarla çarpışabilir ya da kırınabilirler.

<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

<span class="mw-page-title-main">Bohr modeli</span> bir atom modeli

Bohr atom modeli, Niels Henrik Bohr tarafından 1913 yılında, Rutherford atom modelinden yararlanılarak öne sürülmüştür.

<span class="mw-page-title-main">İyonik bağ</span> doğrudur

İyonik bağ, zıt yüklü iyonlar arasındaki elektrostatik kuvvetlere dayanan bir kimyasal bağ türüdür.

<span class="mw-page-title-main">Kimyasal bağ</span> atomları birbirine bağlanmasını ve bir arada kalmasını sağlayan kuvvet

Kimyasal bağ, atomların veya iyonların molekülleri, kristalleri ve diğer yapıları oluşturmak üzere birleşmesidir. Bağ, iyonik bağlar'da olduğu gibi zıt yüklü iyonlar arasındaki elektrostatik kuvvetten veya kovalent bağ'larda olduğu gibi elektronların paylaşılmasından veya bu etkilerin bazı kombinasyonlarından kaynaklanabilir. Açıklanan kimyasal bağların farklı mukavemetleri vardır: kovalent, iyonik ve metalik bağlar gibi "güçlü bağlar" veya "birincil bağlar" ve dipol-dipol etkileşimleri, London dağılım kuvveti ve hidrojen bağı gibi "zayıf bağlar" veya "ikincil bağlar" vardır.

Madde dalgaları veya de Broglie dalgaları, maddenin dalga-parçacık ikiliğini yansıtan kavramdır. Kuram 1924'te, Louis de Broglie tarafından doktora tezinde önerilmiştir. De Broglie denklemleri dalga boyunun parçacığın momentumuyla ters orantılı olduğunu gösterir ve ayrıca de Broglie dalga boyu diye isimlendirilir. Ayrıca madde dalgalarının tekrarsıklığı, de Broglie tarafından türetildiği gibi, parçacığın toplam enerjisi E'ye – kinetik enerjisinin ve potansiyel enerjisinin toplamı – doğru orantılıdır.

<span class="mw-page-title-main">Manyetizma</span> class of physical phenomena

Manyetizma, manyetik alan tarafından oluşturulan fiziksel bir olgudur. Elektrik akımı ya da temel bir parçacık herhangi bir manyetik alan yaratabilir. Bu manyetik alan aynı zamanda diğer akımları ve manyetik momentleri de etkiler. Manyetik alan her maddeyi belli bir ölçüde etkiler. Kalıcı mıknatıslar üzerindeki etkisi en çok bilinen bir durumdur. Kalıcı mıknatıslar ferromanyetizmadan dolayı kalıcı manyetik momente sahiptir. Ferromanyetizma kelimesinde yer alan “ferro” ön eki demir elementinin isminden türetilmiştir. Çünkü kalıcı mıknatıs ilk olarak “manyetit – Fe3O4” adı verilen demir elementinin doğal bir formu olarak gözlemlenmiştir. Çoğu madde kalıcı momente sahip değildir. Bazıları manyetik alan tarafından çekilirken (paramanyetizm); bazıları manyetik alan tarafından itilir (diyamanyetizm). Bazıları ise herhangi bir manyetik alana maruz kaldığında daha karmaşık durumlara sevk olur. Manyetik alan tarafından ihmal edilecek ölçüde etkilenen maddeler ise manyetik olmayan maddeler olarak bilinir. Bunlar bakır, alüminyum, gazlar ve plastiktir. Ayrıca, saf oksijen sıvı hale kadar soğutulduğunda manyetik özellikler gösterir.

<span class="mw-page-title-main">Plazma</span> gaz haldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal reaksiyonun kontrollü etkileşim süreci

Plazma, gaz hâldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal tepkimenin kontrollü etkileşim sürecine verilen genel ad. Daha kolay bir tanımla; atomun elektronlardan arınmış hâlidir.

<span class="mw-page-title-main">Enerji seviyesi</span>

Enerji seviyesi, atom çekirdeğinin etrafında katman katman biçiminde bulunan kısımların her biridir. Bu yörüngelerde elektronlar bulunur. Yörüngenin numarası; 1, 2, 3, 4, ... gibi sayı değerlerini alabilir. Yörünge numarasına baş kuantum sayısı da denir ve "n" ile gösterilir. Yörünge numarası ile yörüngenin çekirdeğe uzaklığı doğru orantılıdır.

<span class="mw-page-title-main">Atom yarıçapı</span> Atomun çekirdeği ile elektron bulut arasındaki uzaklık

Atom yarıçapı, küre şeklinde olduğu düşünülen atomların büyüklüklerini ölçmekte kullanılan bir niceliktir. Bu nicelik bir atomun çekirdeği ile elektron bulutu arasındaki uzaklığı ifade eder.

Rydberg sabiti, Rydberg formülündeki sabittir ve uyarılmış hidrojen atomunun yaydığı elektromanyetik ışınımın dalgaboyunun hesaplanmasında kullanılır. Bu sabit adını İsveçli fizikçi Johannes Rydberg'ten (1854-1919) almıştır. Sabitin sayısal değeri fizikte kullanılan diğer sabitlerden türetilmiştir.

<span class="mw-page-title-main">Liénard-Wiechert potansiyelleri</span>

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

Bir atomik yörünge için açısal nicem sayısı, yörüngesel açısal devinirliği ve yörüngenin şeklini belirleyen sayıdır. Açısal nicem sayısı bir elektronun eşsiz nicem durumunu tanımlayan ikinci set nicem sayılarındandır. Açısal nicem sayısı; yörüngesel açısal nicem sayısı, yörüngesel nicem sayısı ya da ikinci nicem sayısı olarak da bilinir. ℓ ile sembolize edilir.

Kuantum mekaniği madde ve atomların ve atom içindeki parçacıklar ölçeğinde enerji ile etkileşimlerinin davranışını açıklayan bilimsel ilkeler organıdır: Bu makaleye teknik olmayan konuların tanıtımında ulaşabilirsiniz.

Modern kuantum (nicem) mekaniğinden önce gelen eski kuantum (nicem) kuramı, 1900 ile 1925 yılları arasında elde edilen sonuçların birikimidir. Bu kuramın, klasik mekaniğin ilk doğrulamaları olduğunu günümüzde anladığımız bu kuram, ilk zamanlar tamamlanmış veya istikrarlı değildi. Bohr modeli çalışmaların odak noktasıydı. Eski kuantum döneminde, Arnold Sommerfield, uzay nicemlenimi olarak anılan açısal momentumun (devinimin) z-bileşkesinde nicemlenim yaparak önemli katkılarda bulunmuştur. Bu katkı, electron yörüngelerinin dairesel yerine eliptik olduğunu ortaya çıkarmıştır ve kuantum çakışıklık kavramını ortaya atmıştır. Bu kuram, electron dönüsü hariç Zeeman etkisini açıklamaktadır.

Atom fiziğinde, iki-elektron atomu veya Helyumumsu atom olarak adlandırılan, sadece iki elektron ve Z kadar yüklü bir çekirdek ihtiva eden kuantum mekaniksel bir sistemdir. Bu husus, Pauli dışlama ilkesinin ana rolü üstlendiği ilk çok elektronlu sistemler meselesidir.

Kuantum mekaniğinde, spin-yörünge etkileşimi(spin-yörünge etkisi, spin-yörünge bağlaşımı) parçacığın dönüşünün hareketiyle etkileşimidir. En çok bilinen örnek ise, elektronların dönüşü ile elektronların çekirdek etrafındaki dönüşünden dolayı oluşan manyetik alandan dolayı oluşan elektromanyetik etkileşim ve buna bağlı olan elektronların atomik enerji seviyesindeki değişim. Bu tayf çizgilerinden saptanabilir. Buna benzer bir diğer etki proton ve nötronların çekirdekte dönmesinden dolayı oluşan olan Açısal momentum ve güçlü nükleer kuvvet, nükleer kabuk modelindeki değişime neden olur. Spintronik alanında, yarı iletkenlerde ve diğer materyallerde spin yörünge etkileşimi yeni teknolojik gelişimler için araştırılmaktadır.

<span class="mw-page-title-main">Elektronik bant yapısı</span>

Katı hal fiziğinde, bir katının elektron kuşak yapısı ; katıdaki bir elektronun sahip olabileceği enerji aralıkları ya da sahip olamayacağı enerji aralıkları olarak tanımlanır. Enerji bant teorisi bu bant ve bant boşluklarını atom veya moleküllerin büyük periyodik kafeslerindeki bir elektron için, izinli kuantum mekaniksel dalga fonksiyonlarını inceleyerek çıkarır. Bant teorisi katıların birçok fiziksel özelliklerini; örneğin elektriksel direnç ve optik soğurum gibi, açıklamak için başarılı bir biçimde kullanılmaktadır ve katı hal cihazları anlamanın temelini oluşturmaktadır.

<span class="mw-page-title-main">Elektriksel özdirenç ve iletkenlik</span> Wikimedia anlam ayrımı sayfası

Elektriksel öz direnç, belirli bir malzemenin elektrik akımının akışına karşı nicelleştiren bir özelliktir. Düşük bir direnç kolaylıkla elektrik akımının akışını sağlayan bir malzeme anlamına gelir. Karşıt değeri, elektrik akımının geçiş kolaylığını ölçen elektriksel iletkenliktir. Elektriksel direnç, mekanik sürtünme ile kavramsal paralelliklere sahiptir. Elektriksel direncin SI birimi ohm, elektriksel iletkenliğin birimi ise siemens (birim) (S)'dir.