İçeriğe atla

Rockwell sertliği

Rockwell sertlik test cihazı

Rockwell sertlik deneyi, bir malzemenin batma derinliğine dayanan birimsiz bir sertlik ölçeği olup en yaygın olarak kullanılan sertlik ölçeğidir. Batıcı uç olarak; bilye uç veya çok sert malzemelerin ölçümünde kullanılan 120° uç açılı elmas koni batıcı uç ile sertlik ölçülür. Rockwell testinde, numuneye önce bir ön yük uygulanır ardından ana yük uygulanır ve yükü serbest bıraktıktan sonra batma derinliği ölçülür. Kullanılan batıcı ucun türü HRA, HRB, HRC, vb. skalalarla kaydedilen birimsiz bir sayıdır ve son harf ilgili Rockwell ölçeğidir.

Tarihçe

1908'de Viyanalı bir profesör olan Paul Ludwik tarafından bir fikir olarak tasarlanmasına rağmen, Rockwell sertlik testi, Amerika'da olan Bristol Connecticut'taki bir üretim şirketlerinden çalışan Stanley P. Rockwell ve Hugh M. Rockwell kardeşlerin, derinlik ölçmeye dayalı konik bir elmas batıcı uç testi kullanma fikrini genişletmesiyle ve Rockwell test cihazı tasarımı için patent başvurusunda bulunduğu 1914 yılında ticari önem kazandı. Bu test cihazının temel kriteri, ısıl işlemin çelik rulman ırkları üzerindeki etkilerini belirlemek için hızlı bir yöntem sağlamaktı. Rockwell'in en güçlü yönlerinden biri, ihtiyaç duyulan küçük girinti alanıydı. Ayrıca, hesaplamalara veya ikincil ölçümlere gerek kalmadan okumalar doğrudan olduğu için kullanımı çok daha kolaydır. Patent başvurusu 11 Şubat 1919'da onaylandı ve daha sonra 1924'te daha gelişmiş bir tasarım patenti verildi.[1]

Rockwell Sertlik testi

Rockwell sertlik testi adımları

Bir malzemenin Rockwell sertliğinin belirlenmesi, ön yükün ve ardından ana yükün uygulanmasını içerir. ön yük sıfır konumunu oluşturur. Ana yük uygulanır, daha sonra ikincil yük korunurken çıkarılır. Sıfır verisinden penetrasyon derinliği, üzerinde daha sert bir malzemenin daha düşük bir ölçüm sağladığı bir kadranla ölçülür. Yani, penetrasyon derinliği ve sertliği ters orantılıdır. Rockwell sertliğinin başlıca avantajı, sertlik değerlerini doğrudan gösterme yeteneğidir.

Rockwell testi, yapılan küçük girintiye dayanarak sertliği ölçmek için herhangi bir optik ekipman kullanmadığı için çok uygun maliyetlidir, bunun yerine numunedeki girintiyi ölçmek için makine içinde tüm hesaplamalar yapılır ve bir kez verildikten sonra okunması ve anlaşılması kolay bir şekilde net bir sonuç sağlar. Bu aynı zamanda testten önce ve sonra numuneye yapılması gereken herhangi bir yeniden işleme veya son işlem yapılmasını da önler. Bununla birlikte, testlerden yapılan en küçük girintiler potansiyel olarak sertlikte yanlış ölçümlere neden olabileceğinden ve felakete yol açabileceğinden, numuneleri iki kez kontrol etmek çok önemlidir. Zamanla, Rockwell ölçeğindeki indenter de yanlış hale gelebilir ve doğru ve hassas sertlik ölçümleri sağlamak için değiştirilmesi gerekebilir. Rockwell Sertliği denklemi;burada "d" mm cinsinden derinliktir (sıfır yük noktasından) ve N ve h, kullanılan testin ölçeğine bağlı olan ölçek faktörleridir. Genellikle mühendislik ve metalurjide kullanılır. Ticari popülaritesi hızı, güvenilirliği, sağlamlığı, çözünürlüğü ve küçük girinti alanından kaynaklanmaktadır.

Eski Rockwell sertlik test cihazlarının çalışma adımları:

  1. Ön yük kuvveti yüklenir: Rockwell sertlik testi başlangıç test kuvveti 10 kgf'dir (98 N; 22 lbf); yüzeysel Rockwell sertlik testi başlangıç test kuvveti 3 kgf'dir (29 N; 6.6 lbf).
  2. Majör (ana) yük yüklenir.
  3. Ana yük, penetrasyonun durması için yeterli bir "bekleme süresi" için bırakılır.
  4. Yük serbest bırakılır ve sıfır yük noktasından izin derinliği ölçülür. Rockwell değeri genellikle bir kadranda veya ekranda otomatik olarak görüntülenir.

Güvenilir bir okuma elde etmek için, test parçasının kalınlığı, girintinin derinliğinin en az 10 katı olmalıdır.  Ayrıca, dışbükey yüzeyler daha düşük okumalar verdiği için okumalar düz bir dik yüzeyden alınmalıdır. Dışbükey bir yüzeyin sertliği ölçülecekse bir düzeltme faktörü kullanılabilir.

Skala ve Değerler

En yaygın kullanılanı "B" ve "C" ölçekleri olmak üzere birkaç alternatif ölçek daha vardır. Her ikisi de sertliği birimsiz bir sayı olarak ifade eder.

Çeşitli Rockwell ölçekleri[2][3][4]
ÖlçekKısaltma§Ana yük* (kgf)Batıcı uçKullanıldığı malzemelerNh
AHRA60sferokonik elmasSemmente karbür, ince çelik, sığ kasada sertleştirilmiş çelik100500
BHRB100116 in (1,59 mm) bilyeBakır alaşımları, yumuşak çelikler, alüminyum alaşımları, dövme demir130500
CHRC150sferokonik elmasÇelik, sert dökme demirler, perlitik dövme demir, titanyum, derin yüzey sertleştirilmiş çelik, 100 HRB'den daha sert diğer malzemeler100500
DHRD100sferokonik elmasİnce çelik ve orta yüzey sertleştirilmiş çelik ve perlitik dövme demir100500
EHRE10018 in (3,18 mm) bilyeDökme demir, alüminyum ve magnezyum alaşımları, rulman metalleri, termoset plastikler130500
FHRF60116 in (1,59 mm) bilyeTavlanmış bakır alaşımı, ince yumuşak sac metaller130500
GHRG150116 in (1,59 mm) bilyeFosforlu bronz, berilyumlu bakır, dövülebilir demirler.130500
HHRH6018 in (3,18 mm) bilyeAlüminyum, Çinko, Kurşun[5]130500
KHRK15018 in (3,18 mm) bilyeRulman alaşımı, kalay, sert plastik malzemeler[5]130500
LHRL6014 in (6,35 mm) bilyeRulman metalleri ve diğer çok yumuşak veya ince malzemeler.130500
MHRM10014 in (6,35 mm) bilyeTermoplastikler, yatak metalleri ve diğer çok yumuşak veya ince malzemeler130500
PHRP15014 in (6,35 mm) bilyeRulman metalleri ve diğer çok yumuşak veya ince malzemeler130500
RHRR6012 in (12,70 mm) bilyeTermoplastikler, rulman metalleri ve diğer çok yumuşak veya ince malzemeler130500
SHRS10012 in (12,70 mm) bilyeRulman metalleri ve diğer çok yumuşak veya ince malzemeler130500
VHRV15012 in (12,70 mm) bilyeRulman metalleri ve diğer çok yumuşak veya ince malzemeler130500
15T, 30T, 45T15, 30, 45116 in (1,59 mm) bilyeYüzeysel: yumuşak kaplamalar için1001000
15N, 30N, 45N15, 30, 45sferokonik elmasYüzeysel: sertleştirilmiş malzemeler için1001000
*Rockwell sertliği için ön yükleme değeri 10kgf, Yüzeysel Rockwell sertliği için ön yükleme değeri 3 kgf'dir
Sferokonik elmas Brale indenter olarak da adlandırılır, 120 ° ± 0.35 ° dahil açı ve 0.200 ± 0.010 mm'lik bir uç yarıçapı konik bir elmas ile yapılır.
§Rockwell numarası, kısaltmaları takip eden ve "-" (ör. 30N-25) ile ayrılan "Yüzeysel ölçekler" haricinde ölçek kısaltmalarından önce gelir (ör. 60 HRC).
  • İnce malzemelerin A623'e uygun olarak test edilmesi dışında, çelik indenter bilyaları, değişen çaplarda tungsten karbür bilyalarla değiştirilmiştir. Bir bilye indenter kullanıldığında, bir tungsten karbür topunun kullanıldığını belirtmek için "W" harfi kullanılır ve "S" harfi çelik bir topun kullanımını gösterir. Örneğin: 70 HRBW, bir tungsten karbür girinti kullanılarak Rockwell B ölçeğinde okumanın 70 olduğunu gösterir.

Yüzeysel Rockwell testleri, kırılgan ve çok ince malzemeler üzerinde daha düşük yükler ve daha sığ izlenimler kullanır. 45N ölçeği, elmas koni şeklindeki Brale girintisi üzerinde 45 kgf'lik bir yük kullanır ve yoğun seramiklerde kullanılabilir. 15T kantar, 15⁄1 inç çapında (16,1 mm) sertleştirilmiş çelik bilye üzerinde 588 kgf'lik bir yük kullanır ve sac levha üzerinde kullanılabilir.

B ve C ölçekleri örtüşür, öyle ki HRC 20'nin altındaki okumalar ile HRB 100'ün üzerindekiler, genellikle güvenilmez olarak kabul edilir, alınması veya belirtilmesi gerekmez.

Tipik değerler şunları içerir:

  • Çok sert çelik (örneğin keskiler, kaliteli keski bıçakları): HRC 55–66 (M2, W2, O1, CPM-M4 ve D2 gibi Sertleştirilmiş Yüksek Hızlı Karbon ve Takım Çeliklerinin yanı sıra CPM-S30V, CPM-154, ZDP-189 gibi yeni toz metalurjisi Paslanmaz Çeliklerinin çoğu. Hitachi'nin geliştirdiği HAP68 gibi HRC'yi 70-72'in üzerinde tutan alaşımlar vardır. Bunlar son derece zor, ama aynı zamanda biraz kırılgan.)
  • Eksenler: HRC 45–55 hakkında
  • Pirinç: HRB 55 (Düşük pirinç, UNS C24000, H01 Temper) ila HRB 93 (kartuş pirinç, UNS C26000 (260 pirinç), H10 temper)

Kapsamlı A ölçeği de dahil olmak üzere diğer birçok test, özel uygulamalar için kullanılır. Sertleştirilmiş numuneleri ölçmek için özel ölçekler vardır.

Standartlar

  • Uluslararası (ISO)
    • ISO 6508-1: Metallic materials—Rockwell hardness test—Part 1: Test method (scales A, B, C, D, E, F, G, H, K, N, T)
    • ISO 6508-2: Metallic materials—Rockwell hardness test—Part 2: Verification and calibration of testing machines and indenters
    • ISO 6508-3: Metallic materials—Rockwell hardness test—Part 3: Calibration of reference blocks
    • ISO 2039-2: Plastics—Determination of hardness—Part 2: Rockwell hardness
  • ABD (ASTM International)
    • ASTM E18: Standard methods for Rockwell hardness and Rockwell superficial hardness of metallic materials

Diğer sertlik testleri

Kaynakça

  1. ^ "History Of Hardness Testing". 11 Temmuz 2023 tarihinde kaynağından arşivlendi. 
  2. ^ Smith, William F.; Hashemi, Javad (2001), Foundations of Material Science and Engineering (4.4 isbn = 0-07-295358-6 bas.), McGraw-Hill, s. 229 
  3. ^ Sundararajan, G.; Roy, M. (2001). Encyclopedia of Materials: Science and Technology. Hardness Testing: Elsevier Ltd. ss. 3728-3736. ISBN 978-0-08-043152-9. 
  4. ^ Broitman, Esteban (2017). "Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview". Tribology Letters. 65 (23): 4-5. doi:10.1007/s11249-016-0805-5Özgürce erişilebilir. 
  5. ^ a b EBP company R-150T Rockwell hardness tester manual book.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Mohs sertliği</span>

Mohs sertlik skalası, Minerallerin sertliği Avusturyalı mineralog Friedrich Mohs tarafından 1812 de ortaya konulan ve Mohs sertlik dizisi adı verilen bir ölçek yardımıyla nisbi olarak ölçülür. Mohs sertlik skalasına göre bir mineralin sertliğini bulmak için, sertliği bilinen mineral veya minerallerle, sertliği saptanacak olan mineral birbirine sürtülür ve sertliği bilinmeyen mineralin hangi minerali çizdiği ve hangisiyle çizildiği belirlenir. Sonuçta bu işleme göre mineralin sertliği bulunmuş olur. Örneğin, Apatit'i çizip kuvars ile çizilen bir mineralin Mohs skalasına göre sertliği 6 dır. Diğer bir yöntem Mohs skalasında bilinen değerleri olan bir seri madde ile çizme deneyi şeklindedir. Örneğin bir madde flüoriti ile çizilmez ama apatit'le çizilirse, Mohs sertlik derecesi 4 ile 5 arasındadır.

<span class="mw-page-title-main">Beton</span> kompozit yapı malzemesi

Beton, çakıl, kum gibi "agrega" denilen maddelerin bir bağlayıcı madde ve su ile birleştirilmesinden meydana gelen inşaat yapı taşıdır.

<span class="mw-page-title-main">Sondaj</span>

Sondaj Dünya'da bir delik, tünel veya kuyu açmak için delme işlemidir. Kayaları parçalamak ya da delikte kesikler açmak gibi prensiplerle yürütülen işlemlerdir.

<span class="mw-page-title-main">Malzeme bilimi</span> yeni malzemelerin keşfi ve tasarımı ile ilgilenen disiplinlerarası alan; öncelikli olarak katıların fiziksel ve kimyasal özellikleriyle ilgilidir

Malzeme bilimi, malzemelerin yapı ve özelliklerini inceleyen, yeni malzemelerin üretilmesini veya sentezlenmesini de içine alan disiplinlerarası bir bilim dalıdır.

<span class="mw-page-title-main">Vickers sertliği</span>

Vickers sertlik testi, malzemelerin sertliğini ölçmek için Brinell yöntemine alternatif olarak 1921 yılında Vickers Ltd tarafından geliştirilen yöntemdir.

<span class="mw-page-title-main">Bor</span> sembolü B ve atom numarası 5 olan kimyasal element

Bor simgesi B ve atom numarası 5 olan kimyasal elementtir. Kristal formunda kırılgan, koyu, parlak bir metaloid; amorf formunda kahverengi bir tozdur. Bor grubunun en hafif elementidir, kovalent bağlar oluşturan üç değerlik elektronuna sahiptir, bu da borik asit, mineral sodyum borat, bor karbür ve bor nitrür gibi ultra sert bor kristallerini açıklar.

<span class="mw-page-title-main">Sertlik</span>

Sertlik, bir malzemenin aşınma, çizilme, delinme ve kesilme gibi plastik deformasyonlara karşı gösterdiği direnç olarak tanımlanabilir. Malzemenin sertliği süneklik, mukavemet ve tokluk gibi diğer mekanik özellikleriyle ilişkilidir. Dolayısıyla malzemenin sertliğinin ölçülmesiyle malzemenin mukavemet değeri hakkında bilgi sahibi olunabilir.

<span class="mw-page-title-main">Parlama noktası</span> uçucu bir maddenin, bir tutuşturma kaynağı verildiğinde, madde buharının tutuşacağı en düşük sıcaklıktır

Uçucu bir maddenin parlama noktası, bir tutuşturma kaynağı verildiğinde, madde buharının tutuşacağı en düşük sıcaklıktır.

<span class="mw-page-title-main">Bor karbür</span> çok sert ve kovalent malzeme

Bor karbür (B4C), çok sert bir bor-karbon seramik ve kovalent malzemedir. Madde tank zırhı, kurşun geçirmez yelekler, motor sabotaj tozlarının içinde olduğu çok sayıda endüstriyel uygulama alanına sahiptir. Vickers sertliği 30 GPa'dan fazla olan bor karbür, kübik bor nitrür ve elmasın ardından bilinen en sert malzemelerden biridir. Seramiğin yoğunluğu 2,52 g/cm³, molar kütlesi 55,255 g/mol, kaynama noktası 3.500 °C, PubChem Bileşik Kimlik Numarası ise 123279'dur.Türk Kara Kuvvetlerine Giren Altay Tankı'nın Zırhıda Bir Karbür'dür.

<span class="mw-page-title-main">Tane boyu</span>

Tane boyutu münferit tortu tanelerinin çapı veya kırıntılı kayaçlardaki lithified parçacıklardır. Terim ayrıca diğer zerre şekilli malzemelere de uygulanabilecektir. Bu, bir parçacık veya tahıl içindeki tek bir kristalin boyutunu ifade eden kristalit boyutundan farklıdır. Tek bir tane birkaç kristalden oluşabilir. Granül malzeme çok küçük kolloidal parçacıklardan kil, silt, kum, çakıl ve parke taşlarından kayalara kadar değişebilir.

<span class="mw-page-title-main">Gevreklik</span>

Bir malzeme stres altında ufak elastik deformasyon ve önemsiz miktarda plastik deformasyon geçirerek kırılırsa malzemenin gevrek olduğu söylenir. Gevrek malzemeler yüksek mukavemetli olsalar bile kırılmadan önce görece düşük miktarda enerji sönümler. Kırılma sırasında genellikle bir çatlama sesi de çıkar. Çoğu seramik ve cam, PMMA ve polistiren gibi bazı polimerler gevrek malzemelerdir. Pek çok çelik yapısına ve üretim yöntemine bağlı olarak düşük sıcaklıklarda gevreklik gösterir.

<span class="mw-page-title-main">Rüzgâr türbini tasarımı</span>

Rüzgâr türbini tasarımı, rüzgârdan enerji elde etmek için rüzgâr türbininin şekil ve teknik özelliklerinin belirlenmesidir. Rüzgâr türbini kurulumu rüzgâr enerjisini almak, türbini rüzgâra yönlendirmek, mekanik dönüşü elektrik enerjisine çevirmek, türbini başlatmak, durdurmak ve kontrol etmek için gerekli sistemlerden oluşur.

Plastik kaynak, yarı bitmiş plastik malzemeler için kaynaktır ve ISO 472'de, malzemelerin yumuşatılmış yüzeylerini genellikle ısı yardımıyla birleştirme işlemi olarak tanımlanır. Termoplastiklerin kaynağı yüzey hazırlığı, ısı ve basınç uygulaması ve soğutma olmak üzere üç ardışık aşamada gerçekleştirilir. Yarı mamul plastik malzemelerin birleştirilmesi için çok sayıda kaynak yöntemi geliştirilmiştir.

<span class="mw-page-title-main">Elektrokaplama</span>

Elektrokaplama katı bir alt tabaka üzerinde o metalin katyonlarının doğrudan bir elektrik akımı vasıtasıyla indirgenmesi yoluyla metal kaplama yapan işlemlerin genel adıdır. Kaplanacak kısım elektrolitik hücrenin katodu görevi görür; elektrolit, kaplanacak metal tuzunun çözeltisidir; ve anot genellikle ya o metalin külçesi veya bazı etkisiz iletken malzemelerdir. Akım harici bir güç kaynağı tarafından sağlanır.

<span class="mw-page-title-main">Kompozit Malzemeler</span>

Kompozit malzeme, önemli ölçüde farklı fiziksel veya kimyasal özelliklere sahip iki veya daha fazla bileşen malzemeden yapılan ve birleştirildiğinde öncekinden farklı özelliklere sahip olan bir malzeme üreten bir malzeme. Bu kurucu malzemeler, oldukça farklı kimyasal veya fiziksel özelliklere sahiptir ve tek tek elemanlardan farklı özelliklere sahip bir malzeme oluşturmak için birleştirilir. Bitmiş yapı içinde, tek tek elemanlar ayrı ve farklı kalarak kompozitleri, karışımlardan ve katı solüsyonlardan ayırmaktadır.

<span class="mw-page-title-main">Süneklik</span> mühendislik

Süneklik, genellikle bir malzemenin çekme yatkınlığı olarak tanımlanan mekanik bir özelliktir. Malzeme biliminde süneklik, bir malzemenin kopmadan önce çekme gerilimi altında plastik deformasyonu sürdürebilme derecesi ile tanımlanmaktadır. Süneklik, bir malzemenin belirli üretim işlemlerine uygunluğunu ve mekanik aşırı yükü emme kapasitesini tanımlayan mühendislik ve imalatta önemli bir husustur. Genellikle sünek olarak tanımlanan malzemeler arasında altın ve bakır bulunmaktadır. Benzer bir mekanik özellik olan dövülebilirlik, bir malzemenin basınç stresi altında bozulmadan plastik olarak deforme olma yeteneği ile karakterize edilmektedir. Tarihsel olarak, çekiçleme veya haddeleme yoluyla şekillendirmeye uygun olan malzemeler dövülebilir olarak kabul edilmiştir. Kurşun, nispeten dövülebilir ancak sünek olmayan bir malzeme örneğidir.

<span class="mw-page-title-main">Kırılma Mekaniği</span> Malzemelerin yüzeyi ve iç yüzeyindeki çatlakların davranışlarını inceleyen mühendislik dalı.

Kırılma mekaniği, malzemelerdeki çatlakların yayılmasının incelenmesiyle ilgili mekanik alanıdır. Bir çatlak üzerindeki itici kuvveti hesaplamak için analitik katı mekaniği yöntemlerini ve malzemenin kırılmaya karşı direncini karakterize etmek için deneysel katı mekaniği yöntemlerini kullanır.

<span class="mw-page-title-main">Mikroyapı</span>

Mikroyapı, bir malzemenin çok küçük ölçekli yapısıdır. Malzemenin yüzeyi optik veya elektron mikroskobu tarafından büyütülerek malzemenin mikroyapısı incelenir. Bir malzemenin mukavemet, tokluk, süneklik, sertlik, korozyon direnci, termal özellikler veya aşınma direnci gibi fiziksel özellikleri malzemenin mikroyapısına bağlıdır. Bu özellikler, malzemelerin endüstriyel uygulamalarda kullanılabilmesini belirler.

<span class="mw-page-title-main">Brinell sertliği</span> Brinell sertlik ölçeği

Brinell sertlik ölçeği, çapı bilinen çelik veya tungsten karbürden yapılmış bir bilyenin belirli bir yük ve süre ile malzeme yüzeyine bastırılarak malzeme yüzeyinde oluşan izin çapının ölçülmesine dayanan bir sertlik ölçme yöntemidir.

Knoop sertlik deneyi, Vickers sertlik deneyinin bir alternatifi olan bir mikro sertlik deneyidir. Özellikle gevrek malzemeler veya ince levhalar için kullanılan, küçük izlerin oluştuğu mekanik bir sertlik deneyidir. Piramidal bir elmas uç, belirli bir bekleme süresi boyunca bilinen bir yük ile test malzemesinin parlatılmış yüzeyine bastırılır ve elde edilen iz bir mikroskop kullanılarak ölçülür. Bu batıcı ucun geometrisi, uzunluk-genişlik oranı 7:1 olan genişletilmiş bir piramittir ve ilgili yüzey açıları uzun kenar için 172° derece ve kısa kenar için 130° derecedir. Oluşan izin yaklaşık olarak batma derinliğinin uzun köşegenin uzunluğuna oranı 1/30 kadardır.