İçeriğe atla

Riemann geometrisi

Riemann geometrisi, diferansiyel geometriyi temel alan bir 3 boyutlu sistemdir. Yaklaşık 2000 yıl boyunca tüm seviyelerde okutulan Öklid geometrisinin yerini almış; Albert Einstein'ın izafiyet teoremine de yardımcı olmuştur.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Geometri</span> matematiğin uzamsal ilişkiler ile ilgilenen alt dalı

Geometri, matematiğin uzamsal ilişkiler ile ilgilenen alt dalıdır. Yunanca Γεωμετρία "Geo" (yer) ve "metro" (ölçüm) birleşiminden türetilmiş bir isimdir.

<span class="mw-page-title-main">Öklid geometrisi</span> Öklide atfedilen matematiksel-geometrik sistem

Öklid geometrisi, İskenderiyeli Yunan matematikçi Öklid’e atfedilen matematiksel bir sistemdir ve onun Elemanlar adlı geometri üzerine ders kitabında tarif edilmektedir. Öklid'in yöntemi, sezgisel olarak çekici küçük bir aksiyom seti varsaymaktan ve bu aksiyomlara dayanarak birçok başka önermeyi (teoremleri) çıkarmaktan ibarettir. Öklid'in sonuçlarının çoğu daha önceki matematikçiler tarafından ifade edilmiş olsa da, Öklid, bu önermelerin kapsamlı bir tümdengelimli ve mantıksal sisteme nasıl uyabileceğini gösteren ilk kişi oldu. Elemanlar, ilk aksiyomatik sistem ve resmi ispatın ilk örnekleri olarak ortaokulda (lise) hala öğretilen düzlem geometrisi ile başlar. Üç boyutlu katı geometrisi ile devam ediyor. Elemanlar’ın çoğu, geometrik dilde açıklanan, şimdi cebir ve sayı teorisi olarak adlandırılan şeyin sonuçlarını belirtir.

<span class="mw-page-title-main">Öklid</span> Yunan matematikçi, aksiyomatik geometrinin mucidi

Öklid (Grekçe: Εὐκλείδης Eukleídēs; MÖ 330 - 275 yılları arasında yaşamış, İskenderiyeli bir matematikçidir. Megaralı Öklid'den ayırmak için bazen İskenderiyeli Öklid olarak anılır, genellikle "geometrinin kurucusu" veya "geometrinin babası" olarak anılan bir Yunan matematikçiydi. Ptolemy I döneminde İskenderiye'de aktifti. Elemanlar, yayınlandığı zamandan 19. yüzyılın sonlarına veya 20. yüzyılın başlarına kadar matematik öğretimi için ana ders kitabı olarak hizmet veren, matematik tarihindeki en etkili çalışmalardan biridir. Elemanlar’da, Öklid, küçük bir aksiyom setinden, şimdi Öklid geometrisi olarak adlandırılan şeyin teoremlerini çıkardı. Öklid ayrıca perspektif, konik kesitler, küresel geometri, sayı teorisi ve matematiksel kesinlik üzerine eserler yazdı.

<span class="mw-page-title-main">David Hilbert</span>

David Hilbert, ünlü Alman matematikçi. Geometriyi bir dizi aksiyoma indirgeyen ve matematiğin biçimsel temellerinin oluşturulmasına önemli katkıda bulunan Alman matematikçi David Hilbert integralli denklemlere ilişkin çalışmalarıyla fonksiyonel analizin 20. yüzyıldaki gelişmesine öncülük etmiştir.

<span class="mw-page-title-main">Analitik geometri</span>

Analitik geometri, geometrik çalışmaya cebrik analizi uygulayan ve cebrik problemlerin çözümünde geometrik kavramları kullanan bir matematik dalı. Bütün bunlar kartezyen sistem denilen bir koordinat sisteminin kullanılmasıyla mümkündür. Kartezyen kelimesi, batıda analitik geometride ilk bilimsel çalışmayı yapan René Descartes'tan gelmektedir.

<span class="mw-page-title-main">Dolmabahçe Camii</span> Bezmialem Valide Sultanın isteğiyle yapılmış dinî yapı

Dolmabahçe Camii, Sultan Abdülmecid'in annesi Bezmialem Valide Sultan tarafından başlatılıp ölümü üzerine Sultan Abdülmecid tarafından tamamlanan ve tasarımı Garabet Balyan'a ait olan bir yapıdır.

Hiperbolik geometri, Öklid geometrisinden bir aksiyomla ayrılır. Öklid'in paralel aksiyomunun tersini doğru olarak kabul eden geometride bir doğrunun dışındaki bir noktadan birden çok (sonsuz) tane paralel doğru geçebilir. Bunun anlamı hiperbolik geometride Öklid geometrisinin aksine herhangi bir açı oluşturmak için ışınların, doğru ve doğru parçalarının kesişmesine gerek yoktur. Bunun yerine düz olmayan tek bir doğrunun varolması yeterlidir. Ayrıca bir üçgenin iç açıları toplamı her zaman iki tane dik açıdan küçüktür.

Tasarı geometri, uzay problemlerinin çözümlenme ve bu problemlerin grafik olarak gösterilmesini sağlayan yöntemleri içeren bir bilim dalıdır. Tasarı geometri üç boyutlu olan cisimlerin bir düzlem üzerine çizilerek gösterilmesi tekniğidir.

<span class="mw-page-title-main">Kristal yapı</span>

Kristal yapı, malzeme biliminde makroskopik olarak kristalli minerallerin yüzeyleri arasında, mikroskobik olarak ise çoğu katının atomları arasında görülen tekrarlı düzeni ifade eder. Mineraloji ve kristalografide kristaller, yüzey düzlemlerinin birbirlerine göre yerleşimi esas alınarak sınıflandırılırlar. Benzer bir örüntü, kristal yapılı katıların atomları ya da iyonları arasında da görülmekte ve yoğun madde fiziğinde yerleşik bir model olarak kullanılmaktadır.

<span class="mw-page-title-main">Diferansiyel geometri</span>

Diferansiyel geometri türevin tanımlı olduğu Riemann manifoldlarının özellikleriyle uğraşan matematiğin bir alt disiplinidir. Başka bir deyişle, bu manifoldlar üzerindeki metrik kavramlarla uğraşır. Eğrilik, eğriler için burulma ve yüzeyler için değişik eğrilikler, araştırılan özellikler arasındadır.

Öklit dışı geometriler, alışılmış iç çarpım formülünden ayrı bir biçimde tanımlanmış ve reel uzayla birleşmiş iç çarpım yoluyla elde edilen geometrilerdir. Bu geometrilere Galileo ve Lorentz geometrileri örnek olarak verilebilir. Lorentz geometrisinin öne çıkan farklarından biri de iç çarpımın tanımlanmasında temel maddelerden biri olan pozitif tanımlılığı sağlamamasıdır. Öklit geometrisinde vektörler tek tür iken Lorentz geometrisinde space-like, time-like ve null-like (light-like) olmak üzere 3 tür vektör bulunmaktadır.

Cebirsel geometri, matematiğin bir dalıdır. Adından anlaşılabileceği gibi, soyut cebirin, özellikle değişmeli cebirin yöntemleri ile geometrinin dili ve problemlerini bir araya getirir. Çağdaş matematik içerisinde merkezi bir rol üstlenmesinin yanında, karmaşık analiz, topoloji, sayılar kuramı gibi matematiğin diğer dallarıyla yakın ilişkisi vardır.

<i>Geometri</i> (kitap) Mustafa Kemal Atatürkün eseri

Geometri, Atatürk tarafından ilk defa Türkçe geometri terimleri kullanılarak 1936 yılının sonunda yazılmış olan 44 sayfalık kitap.

<span class="mw-page-title-main">İskenderiyeli Pappus</span> MS. 3-4. yüzyıl Yunan matematikçi

İskenderiyeli Pappus (Grekçe: Πάππος ὁ Ἀλεξανδρεύς; yaklaşık MS. 290 - 350) antik çağın son büyük Yunan matematikçilerinden biridir. İskenderiye doğumlu Helenleşmiş bir Mısırlıydı. Synagoge (Συναγωγή) ya da Koleksiyon olarak da adlandırılan eseri ve Pappus teoremi ile bilinir.

<span class="mw-page-title-main">Hesaplamalı geometri</span>

Hesaplamalı geometri, geometri açısından ifade edilebilen algoritmaların incelenmesine ayrılmış bilgisayar bilimlerinin bir dalıdır. Bazı çalışmalar tamamen geometrik problemlerden meydana gelirken bazıları ise hesaplamalı geometrik algoritmaların incelenmesi sonucunda meydana gelmektedir. Bunun gibi problemlerin hesaplama geometrisinin bir parçası olduğu düşünülmektedir. Modern hesaplamalı geometri son zamanlarda gelişme göstermesine karşın, tarihin antik dönemine kadar uzanan en eski bilgi işlem alanlarından biridir.

<span class="mw-page-title-main">Geometri tarihi</span> Geometrinin tarihsel gelişimi

Geometri, mekansal ilişkilerle ilgilenen bilgi alanı olarak ortaya çıkmıştır. Geometri, modern öncesi matematiğin iki alanından biriydi, diğeri ise sayıların incelenmesi yani aritmetikti.

<span class="mw-page-title-main">Geometricilerin listesi</span> Vikimedya liste maddesi

Bir geometrici, çalışma alanı geometri olan matematikçidir.

<span class="mw-page-title-main">Geometrinin ana hatları</span> Geometriye genel bir bakış ve konu rehberi̇

Geometri, şekil, boyut, şekillerin göreceli konumu ve uzayın özellikleri ile ilgili sorularla ilgilenen bir matematik dalıdır. Geometri, en eski matematiksel bilimlerden biridir.