İçeriğe atla

Riemann çemberi

Büyük dairenin küreyi iki eş yarımküreye bölmesi

.

Riemann çemberiadını Bernhard Riemann'dan almış bir çemberdir. Metrik uzay teorisinde ve Riemann geometrisinde, Riemann çemberi büyük çemberin mesafesi ile donatılmış büyük bir çemberdir. Bu terim, kendi içsel, 1 boyutlu, toplam 2π uzunluğa sahip ve yoğun bir metrik çembere sahip olduğu anlamına gelir. Geçici metrik sistemine karşı olarak uzaydaki Öklid birim çemberi tarafından sınırlandırılması sağlanmıştır. Bu nedenle, nokta çiftlerinin arasındaki mesafe, iki nokta tarafından parçalara ayrılan yayın kısa uzunluğu olarak tanımlanmıştır.

Özellikler

Öklid birim çemberinin eni için bilinen değer 2 olmasına karşın, Riemann çemberinin eni π kadardır. Riemann çemberinin kapsamı, Ekvator olarak (herhangi bir büyük çember) iki kürenin +1’lik Gaussian eğim sabiti metrik uzayın algısında bir izometrik içine yerleştirmedir. Hilbert uzayında Riemann çemberinin bir içine yerleştirmesi yoktur.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Öklid geometrisi</span> Öklide atfedilen matematiksel-geometrik sistem

Öklid geometrisi, İskenderiyeli Yunan matematikçi Öklid’e atfedilen matematiksel bir sistemdir ve onun Elemanlar adlı geometri üzerine ders kitabında tarif edilmektedir. Öklid'in yöntemi, sezgisel olarak çekici küçük bir aksiyom seti varsaymaktan ve bu aksiyomlara dayanarak birçok başka önermeyi (teoremleri) çıkarmaktan ibarettir. Öklid'in sonuçlarının çoğu daha önceki matematikçiler tarafından ifade edilmiş olsa da, Öklid, bu önermelerin kapsamlı bir tümdengelimli ve mantıksal sisteme nasıl uyabileceğini gösteren ilk kişi oldu. Elemanlar, ilk aksiyomatik sistem ve resmi ispatın ilk örnekleri olarak ortaokulda (lise) hala öğretilen düzlem geometrisi ile başlar. Üç boyutlu katı geometrisi ile devam ediyor. Elemanlar’ın çoğu, geometrik dilde açıklanan, şimdi cebir ve sayı teorisi olarak adlandırılan şeyin sonuçlarını belirtir.

Hiperbolik geometri, Öklid geometrisinden bir aksiyomla ayrılır. Öklid'in paralel aksiyomunun tersini doğru olarak kabul eden geometride bir doğrunun dışındaki bir noktadan birden çok (sonsuz) tane paralel doğru geçebilir. Bunun anlamı hiperbolik geometride Öklid geometrisinin aksine herhangi bir açı oluşturmak için ışınların, doğru ve doğru parçalarının kesişmesine gerek yoktur. Bunun yerine düz olmayan tek bir doğrunun varolması yeterlidir. Ayrıca bir üçgenin iç açıları toplamı her zaman iki tane dik açıdan küçüktür.

<span class="mw-page-title-main">Dik açı</span> 90° açı (π/2 radyan): düz bir doğrunun oluşturduğu açıyı (180°) iki yarıya bölen açı

Geometri ve trigonometride, bir dik açı, bir çeyrek dönüşe tam olarak 90° (derece) bir açıdır. Bir ışın, uç noktası bir doğru üzerinde olacak şekilde yerleştirilirse ve bitişik açılar eşitse, o zaman bunlar dik açılardır. Terim, Latince angulus rectus’tan öykünmedir; burada rectus, yatay bir taban çizgisine düşey olan dikey manasında "dik (direk)" anlamına gelir.

<span class="mw-page-title-main">Çok katlı</span>

Çok katlı, topolojide soyut topolojik bir uzay. Bu uzayın her noktasının çevresi Öklit uzayına benzer. Bununla birlikte, çok katlı bir Öklit uzayı olmak zorunda değildir. Genel yapısı, bu basit yerel yapısından çok daha karmaşık olabilir. Çok katlının boyutu, yerel olarak benzediği Öklit uzayının boyutu olarak tanımlanır. Herhangi bir topolojik uzay içinse boyut kavramından söz etmek genelde olası değildir.

<span class="mw-page-title-main">Açıkorur gönderim</span>

Matematikte açıkorur gönderim ya da açıkorur dönüşüm tanımlı olduğu kümenin her noktasında yerel olarak açıları koruyan bir fonksiyona verilen addır. Bu tanımı haliyle, açıkorur gönderimlerin her zaman uzunlukları koruması ya da yönleri koruması beklenmez.

Topolojide, geometrik bir nesne veya uzaya yol bağlantılıysa ve iki nokta arasındaki her yol sürekli bir şekilde bir diğerine dönüştürülebiliyorsa basit bağlantılı adı verilir.

<span class="mw-page-title-main">Mesafe</span> ölçülebilir bir uzayda veya gözlemlenebilir bir fiziksel uzayda iki noktayı birleştiren düz çizginin uzunluğu

Mesafe (uzaklık), iki noktanın birbirlerinden ne kadar ayrı olduklarının sayısal ifadesidir. Metrik ölçüm sisteminde uzaklık birimi metredir ve m sembolü ile gösterilir.

Hiperbolik düzlemin dönüşüm grubu, genel Möbius grubunun alt grubu olup ile gösterilir. Üst yarı düzlemi koruyan bu grup Riemann küresi üzerinde tanımlıdır. nin etkisi altında hiperbolik doğrular yine hiperbolik doğrulara giderken, herhangi iki eğri arasındaki açının mutlak değerinin, hiperbolik uzunluk ve uzaklığın korunması grubun karakteristik özelliklerinden bazılarıdır. Bu özelliklerden önemli bir sonuca, hiperbolik düzlemin dönüşüm grubuyla hiperbolik yarı düzlemin izometri grubunun eşyapılı olduğuna, varmak mümkündür.

<span class="mw-page-title-main">İki boyutlu uzay</span>

İki boyutlu uzay ya da kısaca 2D, içinde yaşadığımız evrenin düzlemsel yansımasının geometrik modelidir. 2 boyutlu olan varlıklar sadece genişlik ve yükseklikten oluşan düzlemsel bir yüzeye sahiptirler ve derinlikleri yoktur.

<span class="mw-page-title-main">Hilbert uzayı</span>

Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.

<span class="mw-page-title-main">Pergel ve çizgilik çizimleri</span>

Pergel ve çizgilik çizimi, belli uzunlukta doğrular, belli büyüklükte açılar ve diğer geometrik şekilleri çizmek için sadece ideal bir çizgilik ve pergel kullanılmasıdır.

<span class="mw-page-title-main">Öklid uzayı</span> Öklid geometrisinin yüksek boyutlu vektör uzaylarına genelleştirilmesi

Matematikte Öklid uzayı, Öklid geometrisinin üç boyutlu uzayıdır ve bu kavramlar, çok boyutlu olarak genelleştirilir. “Öklid” terimi bu uzayları, Öklid geometrisi olmayan eğimli uzaydan ve Einstein'nın genel görelilik kuramından ayırt eder. Bu adı Yunan matematikçi Öklid'den dolayı almıştır.

Bu diferansiyel geometri konuların bir listesidir. Ve aynı zamanda Lie grubu konularının listesi metrik geometri ve diferansiyelin sözlüğü bkz.

<span class="mw-page-title-main">Birim çember</span> trigonometri ve mampo da çok işlemi olmuş bir çemberdi ve çok kolay bir yönetimi vardır birim çemberi matematiğin temelini olustur bu yüzden çok önemli bir cemberdir

Birim çember Matematikte, yarıçapı bir birim olan çembere birim çember denir. Çoğunlukla, özellikle trigonometride, Öklid düzlemine göre Kartezyen koordinat sisteminde, merkezi orijin üzerinde (0,0) olan ve yarıçapı bir birim olan çemberdir. n birim çember sıklıkla S1; olarak ifade edilir. Genellikle daha büyük boyutları ise birim küredir. (x, y) birim çember üzerinde bir nokta olduğunda, |x| ve |y|, dik olan ve hipotenüsü bir olan üçgenin diğer kenar uzunluklarıdır. Bu nedenle, Pisagor teoremine göre, x ve y bu denklemi karşılamaktadır.

Birim küre, belirli merkez noktasından 1 birim uzaklıkta olan noktalar kümesidir.Mesafelerin genellenmiş kavramları olarak da kullanılabilir.Kapalı bir birim küre, merkezden 1 birim az veya 1 birime eşit uzaklıktaki noktalar kümesidir.Genellikle, boşluktaki orijinden bir nokta ayırt edilmişitir ve bu noktanın birim kürenin veya birim topun merkezi olduğu anlaşılır.Bu yüzden birim küre ya da birim topun aynı olduğu söylenir. Örneğin;bir boyutlu küre, genellikle bir halka olarak adlandırılan bir yüzeydir ve çember bir içi yüzeye ve dış yüzeye sahipse iki boyutlu bir küredir.Benzer bir şekilde, halk dilinde küre olarak bilinen Öklid katısının yüzeyi iki boyutlu küredir ve ayrıca içi ve dış yüzeye sahip olduğunda üç boyutlu küre olur. Bir birim küre basitçe bir küre yarıçapına sahiptir.Birim kürenin önemi, herhangi bir kürenin ölçeklendirme ve çevirme kombinasyonlarına dönüşebilmesinden anlayabiliriz.Bu yolla, çalışırken kürenin temel özelliklerini daha aza indirgeyebiliriz.

Matematikte açık birim disk, P noktasına uzaklığı 1'den küçük noktalar kümesidir.

<span class="mw-page-title-main">Batlamyus eşitsizliği</span>

Öklid geometrisinde, Batlamyus eşitsizliği, düzlemde veya daha yüksek boyutlu bir uzayda dört nokta tarafından oluşturulan altı uzunluğu ilişkilendirir. Herhangi bir A, B, C ve D noktası için aşağıdaki eşitsizliğin geçerli olduğunu belirtir:

.
<span class="mw-page-title-main">Geometrinin ana hatları</span> Geometriye genel bir bakış ve konu rehberi̇

Geometri, şekil, boyut, şekillerin göreceli konumu ve uzayın özellikleri ile ilgili sorularla ilgilenen bir matematik dalıdır. Geometri, en eski matematiksel bilimlerden biridir.

<span class="mw-page-title-main">Dört boyutlu uzay</span>

Dört boyutlu uzay (4B), üç boyutlu veya 3 boyutlu uzay kavramının matematiksel bir uzantısıdır. Üç boyutlu uzay, gündelik yaşamdaki nesnelerin boyutlarını veya konumlarını tanımlamak için yalnızca boyut adı verilen üç sayıya ihtiyaç duyulduğu gözleminin mümkün olan en basit soyutlamasıdır. Örneğin, dikdörtgen bir kutunun hacmi, uzunluğu, genişliği ve yüksekliği ölçülerek ve çarpılarak bulunur.