İçeriğe atla

Richardson sayısı

Richardson sayısı (Ri), Lewis Fry Richardson (1881–1953) adını taşıyan[1] boyansi teriminin akış kayma gerilmesi terimine oranını ifade eden bir boyutsuz sayı:[2]

burada yerçekimi, yoğunluk, akış sürati ve derinlik anlamına gelir.

Richardson sayısı veya çeşitli türevleri, hava tahmini ve okyanuslar, göller ve rezervuarlardaki yoğunluk ve bulanıklık akıntılarını araştırmada önemli bir pratik kullanıma sahiptir.

Yoğunluk farklarının küçük olduğu akışlar incelendiğinde (Boussinesq yaklaşımı), indirgenmiş yerçekimi g' kullanmak yaygındır ve bu durumda ilgili parametre densimetrik Richardson sayısıdır:

Bu parametre, atmosferik veya okyanus akışları incelendiğinde sıklıkla kullanılmaktadır.

Richardson sayısı birden çok küçükse, boyansi akışta önemsizdir. Eğer birden çok büyükse, boyansi baskın hale gelir (bu, akışkanları homojenleştirecek yeterli kinetik enerjinin olmadığı anlamına gelir).

Richardson sayısı bir mertebesindeyse, akış muhtemelen boyansi etkisiyle gerçekleşir: akışın enerjisi başlangıçta sistemdeki potansiyel enerjiden kaynaklanır.

Havacılık

Havacılık alanında, Richardson sayısı beklenen hava türbülansını tahmin etmek için genel bir ölçüt olarak kullanılır. Düşük bir değer, daha yüksek türbülans derecesine işaret eder. 10 ile 0.1 aralığındaki değerler tipiktir ve birin altındaki değerler belirgin türbülansa işaret eder.

Termal konveksiyon

Termal konveksiyon problemlerinde, Richardson sayısı doğal konveksiyonun zorlanmış konveksiyona kıyasla önem derecesini ifade eder. Richardson sayısı bu bağlamda şu şekilde tanımlanır:

burada g yerçekimi ivmesi, ısıl genleşme katsayısı, Thot sıcak yüzey sıcaklığı, Tref referans sıcaklık, L karakteristik uzunluk ve V karakteristik sürattir.

Richardson sayısı ayrıca Grashof sayısı ve Reynolds sayısı kombinasyonu ile de ifade edilebilir:

Genellikle, Ri < 0.1 olduğunda doğal konveksiyon önemsizdir, Ri > 10 olduğunda zorlanmış konveksiyon önemsizdir ve 0.1 < Ri < 10 olduğunda her ikisi de önemsiz değildir. Genellikle zorlanmış konveksiyonun doğal konveksiyona göre daha büyük olduğu, ancak zorlanmış akış hızlarının aşırı düşük olduğu durumlar dışında olduğu unutulmamalıdır. Bununla birlikte, yükselme kuvveti genellikle karışık konveksiyon (İng. mixed convection) akışının laminer-türbülanslı geçişini tanımlamada önemli bir rol oynar.[3] Su dolu termal enerji depolama tanklarının tasarımında, Richardson sayısı kullanışlı olabilir.[4]

Meteoroloji

Atmosfer biliminde, Richardson sayısının çeşitli ifadeleri yaygın olarak kullanılır: akı Richardson sayısı (İng. flux Richardson number) (temel olan), gradyan Richardson sayısı (İng. gradient Richardson number) ve kitle Richardson sayısı (İng. bulk Richardson number).

  • Akı Richardson sayısı , türbülans kinetik enerjisinin boyansi üretiminin (veya baskılanmasının) kayma gerilimi ile türbülans üretimine oranıdır.[5] Matematiksel olarak, bu şu şekilde ifade edilir:
,

burada gerçek sıcaklık (İng. virtual temperature), gerçek potansiyel sıcaklık (İng. virtual potential temperature), yükseklik, rüzgarın bileşeni, rüzgarın bileşeni ve rüzgarın (dikey) bileşenidir. Üst çizgi (ör. ), ilgili alanın Reynolds ortalamasından sapmasını gösterir.

  • Gradyan Richardson sayısı , "K-teorisi" kullanılarak akı Richardson sayısının yaklaşık olarak elde edilmesiyle elde edilir. Bu şu şekilde sonuçlanır:[6]
.
  • Kitle Richardson sayısı , gradyan Richardson sayısının türevlerine bir sonlu farklar yaklaşımı yapılarak elde edilir, bu da şu şekilde ifade edilir:[7]
.

Burada, herhangi bir değişken için, , yani 'nin yüksekliğindeki değeri ile yüksekliğindeki değeri arasındaki fark anlamına gelir. Alt referans seviyesi olarak alınırsa, (kayma olmama koşulu (İng. no-slip boundary condition) nedeniyle), bu ifade şu şekilde sadeleşir:

.

Oşinografi

Oşinografi alanında, Richardson sayısı tabakalaşmayı dikkate alan daha genel bir forma sahiptir. Bu sayı, su sütunundaki mekanik ve yoğunluk etkilerinin göreceli önemini ölçer ve Taylor–Goldstein denklemi ile tanımlanır. Bu denklem, kayma akışları tarafından tetiklenen Kelvin–Helmholtz kararsızlığını modellemek için kullanılır.

burada N Brunt–Väisälä frekansı ve u rüzgar süratidir.

Yukarıda tanımlanan Richardson sayısı her zaman pozitif olarak kabul edilir. N²'nin negatif bir değeri (yani, karmaşık N) aktif konvektif devrilmeler (İng. active convective overturning) ile dengesiz yoğunluk gradyanlarını gösterir. Bu tür durumlarda, negatif Ri'nin büyüklüğü genellikle ilgi çekici değildir. Ri < 1/4 olduğunda, hız kaymasının tabakalı bir akışkanın tabakalı kalma eğilimini aşması için gerekli bir koşul olduğu ve genellikle bir miktar karışımın (türbülans) gerçekleşeceği gösterilebilir. Ri büyük olduğunda, tabakalaşma boyunca türbülanslı karışım genellikle baskılanır.[8]

Kaynakça

  1. ^ Hunt, J.C.R. (1998). "Lewis Fry Richardson and His Contributions to Mathematics, Meteorology, and Models of Conflict". Annual Review of Fluid Mechanics (İngilizce). 30 (1). ss. xiii-xxxvi. Bibcode:1998AnRFM..30D..13H. doi:10.1146/annurev.fluid.30.1.0. ISSN 0066-4189. 21 Eylül 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Temmuz 2024. 
  2. ^ "Encyclopædia Britannica: Richardson number". 4 Mayıs 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Temmuz 2024. 
  3. ^ Garbrecht, Oliver (23 Ağustos 2017). "Large eddy simulation of three-dimensional mixed convection on a vertical plate" (PDF). RWTH Aachen University. 23 Temmuz 2024 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 13 Temmuz 2024. 
  4. ^ Robert Huhn Beitrag zur thermodynamischen Analyse und Bewertung von Wasserwärmespeichern in Energieumwandlungsketten, 978-3-940046-32-1, Andreas Oberhammer Europas größter Fernwärmespeicher in Kombination mit dem optimalen Ladebetrieb eines Gas- und Dampfturbinenkraftwerkes (Vortrag 2007)
  5. ^ "Flux Richardson number". AMS Glossary. American Meteorological Society. 20 Haziran 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Haziran 2023. 
  6. ^ "Gradient richardson number". AMS Glossary. American Meteorological Society. 20 Haziran 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Haziran 2023. 
  7. ^ "Bulk richardson number". AMS Glossary. American Meteorological Society. 20 Haziran 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Haziran 2023. 
  8. ^ A good reference on this subject is Turner, J. S. (1973). Buoyancy Effects in FluidsÜcretsiz kayıt gerekli. Cambridge University Press. ISBN 978-0-521-08623-3. 

İlgili Araştırma Makaleleri

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

<span class="mw-page-title-main">Akım fonksiyonu</span>

Akım Fonksiyonu, eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz akışlar için tanımlanır. Akış hızı bileşenleri, skaler akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı. Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.

<span class="mw-page-title-main">İletim hattı</span>

İletim hattı, elektronik ve haberleşme mühendisliğinde, akımın dalga karakteristiğinin hesaba katılmasını gerektirecek kadar yüksek frekanslarda, radyo frekansı, alternatif akımın iletimi için tasarlanmış özel kablo. İletim hatları radyo vericisi, alıcısı ve bunların anten bağlantıları, kablolu televizyon yayınlarının dağıtımı ve bilgisayar ağları gibi yerlerde kullanılır.

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

<span class="mw-page-title-main">Vektör alanı</span> oklid uzayının seçilen bir alt kümesinin her bir noktasında yöneyin belirlenmesidir.

Yöney alan, Öklid uzayının seçilen bir alt kümesinin her bir noktasında yöneyin belirlenmesidir. Düzlemdeki bir yöney alanı, her biri düzlemdeki bir noktaya ilişik, yönü ve büyüklüğü olan oklar topluluğu olarak düşünülebilir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Fizikte, dairesel hareket bir nesnenin dairesel bir yörünge boyunca bir rotasyon ya da çemberin çevresinde yaptığı harekettir. Rotasyonun sürekli açısal değeriyle birlikte düzgün ya da değişen rotasyon değeriyle düzensiz olabilir. 3 boyutlu bir cismin sabit ekseni etrafındaki rotasyon parçalarının dairesel hareketini içerir. Hareketin denkliği bir cisim kütlesinin merkezini tanımlar.

Matematikte, uzunluğu 1 olan ve uzayda bir norma sahip olan vektöre birim vektör denir. Birim vektör genellikle ‘û‘ gibi şapkalı ve küçük harflerle ifade edilir. Normalize vektör veya versor olmayan bir sıfır vektörü u ile eş yönlü olan birim vektörü u

Dean sayısı (De), akışkanlar mekaniği alanında, özellikle eğri borular ve kanallarda meydana gelen akış dinamiklerinin incelenmesinde kullanılan bir boyutsuz sayıdır. Bu terim, Britanyalı bilim insanı William Reginald Dean'in adını taşımaktadır. Dean, laminer akış durumunda, düz bir borudaki Poiseuille akışından, çok küçük bir eğrilik içeren bir boruya kadar olan akışın teorik çözümünü bir bozulma yöntemi kullanarak ilk kez sunmuştur. Bu çalışma, eğri borulardaki akış mekaniklerinin anlaşılmasında temel bir adım olarak kabul edilir.

Matematiksel fizikte, hareket denklemleri, fiziksel sistemin hareket sürecindeki davranışını, zamanın bir fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemleri, fiziksel sistemin davranışını devinimsel değişkenler üzerinde tanımlanmış bir matematiksel fonksiyon takımı olarak izah eder. Bu değişkenler genellikle uzay koordinatları ve zamandan ibarettir, ama gerektiğinde momentum bileşenleri de kullanılır. En yaygın değişken seçeneği, fiziksel sistemin özelliklerini uygun şekilde tanımlayan değişkenlerden oluşan genelleştirilmiş koordinatlardır. Klasik mekanikte bu fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte eğilmiş uzay üzerindeki fonksiyon daha uygundur. Eğer sistemin dinamikleri biliniyor ise, bu fonksiyonları tanımlayan denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Elektrozayıf etkileşim</span>

Parçacık fiziğinde elektrozayıf etkileşim, doğanın bilinen iki veya dört temel etkileşiminin birleşimin bir tanımıdır: elektromanyetizm ve zayıf etkileşim. Her gün düşük enerjilerde, bu iki kuvvet çok farklı oluşsa da, teori modelleri aynı kuvvetin iki farklı etkisi gibidir. Yukarıdaki birleştirme enerjisi, yaklaşık 100 GeV, tek bir elektrozayıf kuvvet oluşturabilir. Bu yüzden, eğer evren yeterince sıcaksa (Big Bang'den kısa bir sonra olan bir sıcaklık ortalama 1015 K), elektromanyetik kuvvet ve zayıf kuvvet birleşmiş bir elektrozayıf kuvvete dönüşür. Elektrozayıf dönem boyunca, zayıf kuvvet güçlü kuvvetten ayrılır. Kuark dönem boyunca, elektrozayıf kuvvet elektromanyetik ve zayıf kuvvetten ayrılır.

Termal akışkan dinamiği alanında, Nusselt sayısı (Nu), Wilhelm Nusselt'in adını taşıyan ve bir sınır tabakasındaki toplam ısı transferinin, kondüksiyon ısı transferine oranını ifade eden bir boyutsuz sayıdır. Toplam ısı transferi, kondüksiyon ve konveksiyonu içerir. Konveksiyon ise adveksiyon ve difüzyon bileşenlerinden oluşur. Kondüktif bileşen, konvektif koşullar altında ancak hareketsiz bir akışkan için varsayılarak ölçülür. Nusselt sayısı, akışkanın Rayleigh sayısı ile yakından ilişkilidir.

Türbülanslı Prandtl sayısı (Prt), momentum girdap difüzyonu ile ısı transferi girdap difüzyonu arasındaki oran olarak tanımlanan bir boyutsuz terimdir. Bu sayı, türbülanslı sınır tabaka akışlarındaki ısı transferi problemlerinin çözümünde oldukça önemlidir. Prt için en basit model Reynolds benzeşimi olup, türbülanslı Prandtl sayısını 1 olarak belirler. Deneysel verilere dayanarak, Prt'nin ortalama değeri 0,85 olup, sıvının Prandtl sayısı'na bağlı olarak 0,7 ile 0,9 arasında değişmektedir.

<span class="mw-page-title-main">Casorati-Weierstrass teoremi</span>

Karmaşık analizde Casorati-Weierstrass teoremi, holomorf fonksiyonların esaslı tekillikler civarındaki olağanüstü davranışlarını açıklayan bir ifadedir. Teorem, Karl Theodor Wilhelm Weierstrass ve Felice Casorati'ye atfen isimlendirilmiştir.