İçeriğe atla

Rhombicuboctahedron

Geometride eşkenar dörtgen veya küçük eşkenar dörtgen, sekiz üçgen, altı kare ve on iki dikdörtgen yüzü olan bir çokyüzlüdür. Her birinde bir üçgen, bir kare ve iki dikdörtgenin buluştuğu 24 özdeş köşe vardır. Eğer tüm dikdörtgenlerin kendisi kare ise (eşdeğer olarak, tüm kenarlar aynı uzunlukta olup üçgenlerin eşkenar olmasını sağlar), bu bir Arşimet katıdır. Çokyüzlü, küp ve oktahedron gibi oktahedral simetriye sahiptir. Çiftine deltoidal ikositetrahedron veya trapezoidal ikositetrahedron denir, ancak yüzleri gerçekten gerçek trapezoidler değildir.

Leonardo da Vinci'nin ise bu şeklin resmini daha önceden yapmış olduğu düşünülüyor.[1]

Kaynakça

  1. ^ MacKinnon, Nick (1993). "The Portrait of Fra Luca Pacioli". The Mathematical Gazette. 77 (479): 143. doi:10.2307/3619717. JSTOR 3619717. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Dik üçgen</span>

Dik üçgen, iç açılarından biri 90° olan üçgendir. Çemberde çapı gören çevre açı 90°'dir.

Altın oran, matematikte iki miktardan büyük olanın küçüğe oranı, miktarların toplamının miktarları büyük olanına oranı ile aynı ise altın orandır. Altın oran aynı zamanda antik çağdan bu yana sanat ve mimaride en iyi uyum ve oranları veren düzen bağıntısı olarak kabul edilmekteydi.

<span class="mw-page-title-main">Piramit (geometri)</span> Geometrik şekil

Piramit, üçgen yüzler tek bir tepede birleşmek üzere n-köşeli bir çokgensel bir tabana oturtulmuş n+1 yüzü ve 2n ayrıtı olan polihedrondur. Piramitlerin isimlendirmesi tabanlarına göre yapılır. Örneğin tabanı kare olan piramit, kare piramit olarak adlandırılır. Tabanı dörtgen olan bir piramidin 5 yüzü vardır.

<span class="mw-page-title-main">Kare</span>

Kare, murabba veya dördül, bütün kenarları ve açıları birbirine eşit olan düzgün dörtgendir. Matematiğin en temel geometrik şekillerinden biridir. Bir kare aynı zamanda dikdörtgen ve eşkenar dörtgendir. Bu iki özel dörtgenin tüm özelliklerini taşır. Eski adı ise murabbadır.

<span class="mw-page-title-main">Dörtgen</span>

Dörtgen, herhangi üçü doğrusal olmayan dört noktayı sırayla birleştiren doğru parçalarının oluşturduğu kapalı şekle denir. Dört kenarı ve dört köşesi olan çokgendir. Dörtgenler, konveks (dışbükey) ve konkav (içbükey) olabilirler. Dörtgen denilince akla konveks dörtgenler gelmelidir.

Platonik cisim, beş katı cisim veya düzgün katı cisim, bütün kenarları eşit ve yüzeyleri düzgün çokgen olan katı cisimdir.

Merkez, geometride bir cismin tam ortasındaki noktadır.

<span class="mw-page-title-main">Dik açı</span> 90° açı (π/2 radyan): düz bir doğrunun oluşturduğu açıyı (180°) iki yarıya bölen açı

Geometri ve trigonometride, bir dik açı, bir çeyrek dönüşe tam olarak 90° (derece) bir açıdır. Bir ışın, uç noktası bir doğru üzerinde olacak şekilde yerleştirilirse ve bitişik açılar eşitse, o zaman bunlar dik açılardır. Terim, Latince angulus rectus’tan öykünmedir; burada rectus, yatay bir taban çizgisine düşey olan dikey manasında "dik (direk)" anlamına gelir.

<span class="mw-page-title-main">Louvre Piramidi</span>

Louvre Piramidi, Paris'teki Louvre Müzesi'nin avlusunda bulunan cam ve metalden oluşturulmuş piramittir.

<span class="mw-page-title-main">Euler teoremi</span>

Eğer çokyüzlünün herhangi iki noktasını birleştiren doğru parçası yine bu yüzlünün içinde kalıyorsa, bu çokyüzlüye konveks (dışbükey) çokyüzlü denir. Konveks çokyüzlülerin yüz, ayrıt ve köşe sayıları arasında Euler Teoremi veya Euler Belirtkeni olarak bilinen bir bağıntı vardır.

<span class="mw-page-title-main">Tesselasyon</span>

Matematikte bir döşeme, aralarında boşluk bırakmadan veya örtüşmeden bir düzlemi kaplayan düzlemsel şekiller kümesidir. Bu kavram daha yüksek boyutlar için de genellenebilir, bu genişletilmiş anlamı için döşeme yerine tesselasyon terimi kullanılır. Tesselasyon M. C. Escher'in eserlerinde sıkça görülebilir. Tesselasyona sanat tarihi boyunca, antik mimariden modern sanata kadar rastlanabilir.

<span class="mw-page-title-main">Dört yüzlü</span>

Geometride tetrahedron veya dört yüzlü, dört üçgen yüzden oluşan bir çokyüzlüdür (polihedron), her köşesinde üç üçgen birleşir. Düzgün dört yüzlü dört üçgenin eşkenar olduğu bir dört yüzlüdür ve Platonik cisimlerden biridir. Dörtyüzlü, dört yüzü olan tek konveks çokyüzlüdür. Tetrahedron isminin sıfat hali "tetrahedral"dır.

<span class="mw-page-title-main">Eşkenar dörtgen</span>

Matematiğin bir alt dalı olan Geometride bir eşkenar dörtgen, dört kenarlı ve tüm kenar uzunlukları birbirine eşit bir dörtgendir. Oyun kâğıtlarında görülen eşkenar dörtgene karo, bu şekle sahip olan haplara lozanj, bu şekle sahip olan beyzbol oyun sahasına diamond (elmas) denir.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Romboid</span>

Romboid veya baklava şekli, geleneksel iki boyutlu geometride, bitişik kenarların eşit olmayan uzunluklarda ve açıların dik açılı olmadığı bir paralelkenardır.

<span class="mw-page-title-main">Ruşnik</span>

Ruşnik, yüzyıllardan beri geleneksel olarak kullanılan işlemeli geleneksel bir tür kumaş. Bu kumaş türüne Doğu Slavları tarafından kutsallık atfedilmiştir. Dini ritüeller, düğünler ve cenazeler gibi törensel etkinliklerde sıkça kullanılmaktadır. Her bölgenin, nesilden nesile aktarılan ve etnograflar tarafından inceleme konusuna sahip çeşitli şifreli anlamlar içeren kendi tasarımları ve desenleri vardır.

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

Dışbükey bir kirişler çokgeni, herhangi bir şekilde üçgenlere ayrıldığında ve bu şekilde oluşturulan her üçgene bir iç teğet çember çizildiğinde Japon teoremi, bu üçgenlerin iç teğet çemberlerinin yarıçapları toplamının, seçilen üçgenlemeden bağımsız bir şekilde sabit olduğunu belirtir. Bu teorem, Carnot teoremi kullanılarak kanıtlanabilir. Japon matematikçilerin eski bir geleneğine göre, bu teorem 1800'de tanrıları ve yazarı onurlandırmak için bir Japon tapınağına asılan tabletlere yazılmış bir Sangaku problemiydi.

<span class="mw-page-title-main">Kirişler dörtgenleri için Japon teoremi</span>

Geometride, Japon teoremi, bir kirişler dörtgeni içindeki belirli üçgenlerin iç teğet çember lerinin merkezlerinin bir dikdörtgenin köşeleri olduğunu belirtir.

<span class="mw-page-title-main">Viviani teoremi</span> Herhangi bir iç noktadan bir eşkenar üçgenin kenarlarına olan en kısa mesafelerin toplamının üçgenin yüksekliğinin uzunluğuna eşit olduğunu belirten Öklid geometrisi teoremi

Adını Vincenzo Viviani'den alan Viviani teoremi, herhangi bir iç noktadan bir eşkenar üçgenin kenarlarına olan en kısa mesafelerin toplamının üçgenin yüksekliğinin uzunluğuna eşit olduğunu belirtir. Çeşitli matematik yarışmalarında, ortaokul matematik sınavlarında yaygın olarak kullanılan bir teoremdir ve gerçek dünyadaki birçok probleme uygulanabilirliği vardır.