İçeriğe atla

Reynolds transport teoremi

Diferansiyel kalkülüste, Reynolds transport teoremi, Leibniz–Reynolds transport teoremi veya kısaca Reynolds teoremi, integralin türevi olarak da bilinen Leibniz integral kuralının genelleştirilmiş üç boyutlu hâli. Teorem ismini Osborne Reynolds'dan alır. Sürekli ortamlar mekaniğinin temel denklemlerini daha kullanışlı hâle getirir.

f = f(x,t)'in ∂Ω(t) sınırına sahip zamana bağlı Ω(t) bölgesinde integralinin alındığı düşünülür ve ardından zamana göre türev alınırsa:

Eğer türev integralin içine taşınmak istenirse iki sorunla karşılaşılır: f zamana bağlıdır ve hareketli sınırlardan ötürü Ω alanı değişmektedir. Reynolds transport teoremi gerekli bağlantıyı sağlar.

Genel form

Reynolds transport teoremi şu şekilde ifade edilebilir:[1][2][3]

n(x,t) dış yönlü birim normal vektörü; x bölgedeki bir noktayı ve integrasyon değişkenini; dV ve dA, x'deki hacim ve yüzey elemanlarını; vb(x,t) alan elemanının hızını (akış hızını değil) temsil eder. f fonsiyonu tensör, vektör veya skaler olabilir.[4] Denklemin sol tarafındaki integral sadece zamana bağlı bir fonksiyon olduğu için tam türev kullanılmıştır.

Maddesel elemanlar için form

Sürekli ortamlar mekaniğinde bu teorem maddesel elemanlar için sıklıkla kullanılır. Bu elemanlar, süreklilik içinde tanımlanabilecek en küçük akışkan veya katı parçacıklarıdır ve bunlara herhangi bir madde giriş-çıkışı olmadığı kabul edilir. Eğer Ω(t) maddesel eleman ise, bir v = v(x,t) hız fonksiyonu vardır ve sınır elemanları şu denkliğe uyar: Bu denklik genel forma uygulanırsa şu denklem elde edilir:[5]

Ayrıca bakınız

  • Leibniz integral kuralı

Kaynakça

  1. ^ L. G. Leal, 2007, p. 23.
  2. ^ O. Reynolds, 1903, Cilt 3, sf. 12–13
  3. ^ J.E. Marsden ve A. Tromba, 5. bas. 2003
  4. ^ H. Yamaguchi, Engineering Fluid Mechanics, Springer c2008 p23
  5. ^ T. Belytschko, W. K. Liu, and B. Moran, 2000, Nonlinear Finite Elements for Continua and Structures, John Wiley and Sons, Ltd., New York.

Notlar

  • Leal, L. G. (2007). Advanced transport phenomena: fluid mechanics and convective transport processes. Cambridge University Press. ISBN 978-0-521-84910-4. 
  • Marsden, J. E.; Tromba, A. (2003). Vector Calculus (5.5yayıncı=W. H. Freeman bas.). New York. ISBN 978-0-7167-4992-9. 
  • Reynolds, O. (1903). Papers on Mechanical and Physical Subjects. Vol. 3, The Sub-Mechanics of the Universe. Cambridge: Cambridge University Press. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

<span class="mw-page-title-main">Katı cisim dinamiği</span>

Katı-cisim dinamiği, dış kaynaklı kuvvetler karşısında hareket eden birbiri ile ilişkili sistemlerin analizini inceler. Her bir gövde için, cisimlerin katı olduğu ve bu nedenle uygulanan kuvvetler nedeni ile deforme olmadıkları, sistemi tanımlayan taşıma ve dönme parametrelerinin sayısını azaltarak analizi basitleştirmektedir.

<span class="mw-page-title-main">Tork</span> bir kuvvetin nesnenin ekseninde, dayanak noktasında ya da çevresinde dönme eğilimi

Tork, kuvvet momenti ya da dönme momenti, bir cismin bir eksen etrafındaki dönme, bükülme veya burulma eğilimini dönme ekseni merkezine indirgeyerek ölçen fiziksel büyüklüktür. Torkun büyüklüğü moment kolu uzunluğuna, uygulanan kuvvete ve moment kolu ile kuvvet vektörü arasındaki açıya bağlıdır.

Fizikte, birim zamanda aktarılan veya dönüştürülen enerjiye ya da yapılan işe güç denir, P simgesiyle gösterilir. Uluslararası Birim Sistemi'nde güç birimi, saniyedeki bir joule'e eşit olan watt'tır kısacası J/s. Eski çalışmalarda güç bazen iş olarak adlandırılırmıştır. Güç türetilmiş bir nicelik ve skaler bir büyüklüktür.

<span class="mw-page-title-main">Çizgi integrali</span>

Matematikte bir çizgi integrali, integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.

Genlik, periyodik harekette maksimum düzey olarak tanımlanabilir. Genlik, bir dalganın tepesinden çukuruna kadar olan düşey uzaklığın yarısıdır. Genlik kavramı ışık, elektrik, radyo dalgaları gibi konuları da kapsayan fen bilimleri alanında kullanılır.

Admittans elektrik mühendisliğinde karmaşık iletkenlik anlamına gelir. Admittans ile empedans çarpımı 1 dir. Admittans Y ile gösterilir. Birimi MKS sisteminde siemens (S)'dir. Kimi eski kitaplarda S yerine mho birimi de kullanılır.

Açısal hız, bir objenin birim zamandaki açısal olarak yer değiştirme miktarına verilen isimdir. Açısal hız vektörel olup bir cismin bir eksen üzerindeki dönüş yönünü ve hızını verir. Açısal hızın SI birimi radyan/saniyedir, ancak başka birimlerde de ölçülebilir. Açısal hız genellikle omega sembolü ile gösterilir. Açısal hızın yönü genellikle dönüş düzlemine diktir ve sağ el kuralı ile bulunabilir.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

Matematikte, Green kuramı basit, kapalı bir C eğrisi etrafındaki çizgi integrali ile C eğrisinin sınırlandırdığı D düzlem bölgesi üzerindeki çift katlı integral arasındaki ilişkiyi verir. Teorem adını matematikçi George Green'den almıştır ve daha genel hâli olan Stokes teoreminin iki boyuttaki özel durumudur.

<span class="mw-page-title-main">Grup hızı</span> dalga şiddetinin genel şekli ile boşlukta yayılan hızı

Bir dalganın grup hızı, dalga şiddetinin genel şekli ile boşlukta yayılan hızıdır. Örneğin, bir taşın, durgun bir su birikintisinin ortasına atıldığında ne olabileceğini düşünelim. Taş suyun yüzeyine geldiği anda, o bölgede dairesel dalgalanmalar meydana gelir. Kısa bir süre içinde, hareketsiz bir merkezden yayılan bu dalgalar dairesel halkalara dönüşür. Giderek genişleyen bu dairesel halkalar, farklı hızlarda yayılan ve farklı dalga boylarına sahip daha küçük dalgaları kendi içerisinde birbirinden ayırabilen bir dalga grubudur. Uzun dalgalar, tüm gruba kıyasla daha hızlı yol alabilirken; sona doğru yaklaştıkça kaybolurlar. Kısa dalgalar ise daha yavaş yol alırlar ve bir önceki dalga sınırına ulaştıklarında yok olurlar.

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

Matematiksel fizikte, hareket denklemleri, fiziksel sistemin hareket sürecindeki davranışını, zamanın bir fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemleri, fiziksel sistemin davranışını devinimsel değişkenler üzerinde tanımlanmış bir matematiksel fonksiyon takımı olarak izah eder. Bu değişkenler genellikle uzay koordinatları ve zamandan ibarettir, ama gerektiğinde momentum bileşenleri de kullanılır. En yaygın değişken seçeneği, fiziksel sistemin özelliklerini uygun şekilde tanımlayan değişkenlerden oluşan genelleştirilmiş koordinatlardır. Klasik mekanikte bu fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte eğilmiş uzay üzerindeki fonksiyon daha uygundur. Eğer sistemin dinamikleri biliniyor ise, bu fonksiyonları tanımlayan denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Sürekli ortamlar mekaniği</span>

Sürekli ortamlar mekaniği, ayrı parçacıklar yerine tam bir kütle olarak modellenen maddelerin mekanik davranışları ve kinematiğin analizi ile ilgilenen mekaniğin bir dalıdır. Fransız matematikçi Augustin-Louis Cauchy, 19. yüzyılda bu modelleri formüle dökmüştür, fakat bu alandaki araştırmalar günümüzde devam etmektedir. 

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

Vektör analizi ve modern haliyle diferansiyel geometride ''Stokes teoremi'' ya da güncel haliyle ''genelleştirilmiş Stokes teoremi'' veya ''Stokes-Cartan teoremi'' Vektör Analizi'nden çeşitli teoremleri hem basitleştiren hem de genelleştiren çokkatlılar üzerindeki diferansiyel formların integrasyonu ile ilgili önemli bir teoremdir. Klasik anlamı için Kelvin-Stokes teoremine bakılması gerekir. Modern anlamına 20. yüzyılın önemli matematikçilerinden Ellie Cartan ile kavuşmuştur. Yani teorem ismini İrlandalı matematikçi ve fizikçi George Gabriel Stokes ve modern haliyle Fransız matematikçi ve fizikçi Ellie Cartan'dan almaktadır. Modern anlamda Stokes teoremi bir diferansiyel form olan ω'nın bazı yönlendirilebilir Ω çokkatlısının sınırları üzerindeki integralinin Ω'nın tamamı üzerindeki dış türevi dω'nın integraline eşit olduğunu söyler. Yani;

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.