İçeriğe atla

Retinalofototrof

Bir retinalofototrof, iki farklı fotoototrof türünden biridir, bir fototrof alt sınıfıdır ve hücre uyarımlaması ve ışığı enerjiye dönüştürmek için kullandıkları ağtabaka(retina) bağlayıcı proteinler olarak adlandırılır.[1][2][3][4] Tüm fotoototroflar gibi, retinalofototroflar da hücresel süreçlerini başlatmak için fotonları emer.[2][3][4] Ancak, tüm fotoototrofların aksine, retinalofototroflar, kimyasal tepkimelerini güçlendirmek için klorofil veya bir elektron taşıma zinciri kullanmazlar.[2][3][5] Bu, retinalofototrofların, inorganik karbonu (karbon dioksit gibi moleküler bileşiklerde bulunan karbon) organik bileşiklere dönüştüren temel bir fotosentetik süreç olan geleneksel karbon fiksasyonundan yoksun oldukları anlamına gelir.[4][5] Bu nedenle uzmanlar, bunların fotoototrofik benzeri olan klorofototroflardan daha az verimli olduğunu düşünüyor.[6]

Enerji dönüşümü

Retinalofototroflar, bir proton hareket gücü aracılığıyla yeterli enerji dönüşümü sağlar.[3][4] Retinalofototroflarda proton hareket gücü, rodopsin benzeri proteinlerden, özellikle bakteriyörodopsin ve proteorodopsinden üretilir ve hücresel bir zar boyunca proton pompaları görevi görür.[1][4]

Retinalofototroflar, bir protein pompasını etkinleştirmede gerekli fotonları yakalamak için karotenoidler olarak bilinen organik pigmentleri, yani beta-karotenoidleri kullanır.[3][4][7] Retinalofototroflarda bulunan beta-karotenoidler, enerji dönüşümü için olağandışı adaylardır, ancak retinaldehit veya retinal oluşumu için gerekli olan yüksek A Vitamini aktivitesine sahiptirler.[3][4][7] A Vitamininden yapılandırılmış bir kromofor molekülü olan retinal, karotenoidler arasındaki bağlar ayrılma (en:cleavage) adı verilen bir işlemle bozulduğunda oluşur.[3][4][7] Aşırı ışık duyarlılığı nedeniyle retina, proton hareket gücünün aktivasyonu için idealdir ve retinalofototroflara benzersiz bir mor renk verir.[1][4] Retinal yeterince ışığı emdiğinde, izomerleşir, böylece rodopsin benzeri proteinlerin kovalent bağları arasında konformasyonel (yani yapısal) bir değişikliği zorlar.[1][3][4] Aktivasyon üzerine, bu proteinler, hücre zarının içi ve dışı arasında bir elektrokimyasal düşüm (gradyan) oluşturmak için iyonların geçişine izin veren bir ağ geçidini taklit eder.[1][4] Proton pompaları aracılığıyla gradyan boyunca dışarı doğru yayılan iyonlar, daha sonra hücre yüzeyindeki ATP sentaz proteinlerine bağlanır.[1][4] Hücreye geri yayılırken, protonları ATP'nin (ADP ve bir fosfor iyonundan) oluşumunu kolaylaştırarak (katalize ederek) retinalofototrofik kendi kendine beslenmeyi ve tomurcuklanarak üreme (proliferasyon) için enerjiyi sağlar.[1][4]

Sınıflandırma

Retinalofototroflar, yaşamın tüm alanlarında, ancak ağırlıklı olarak Bakteriler ve Arkea taksonomik gruplarında bulunur.[2][5][6] Bilim adamları, retinalofototrofinin meydana gelmesi için yalnızca iki gen gerektiğinden, retinalofototrofun genel ekolojik bolluğunun horizontal veya lateral gen transferiyle ilişkili olduğuna inanıyor: esas olarak, retinal bağlayıcı protein sentezi (bop) için bir gen ve retinal kromofor sentezi (blh) için bir gen.[3][4]

Çevre ile etkileşim

Görünür sadeliklerine rağmen, retinalofototroflar, nispeten aşırı ortamlarda varoluşlarına dönüşen çok yönlü iyon kullanımına sahiptir.[3] Örneğin, retinalofototroflar, inorganik karbon eksikliğine rağmen, yeterli ışığın yanı sıra sodyum, hidrojen veya klorür konsantrasyonlarının, hayati metabolik süreçlerini destekleyebilecek koşulları barındırdığı 200 metrenin üzerindeki derinliklerde gelişebilir.[3] Çalışmalar ayrıca sodyum ve hidrojen iyonlarının retinalofototrofun besin alımı ve ATP sentezi ile doğrudan ilişkili olduğunu, klorürün ise ozmotik dengeden sorumlu süreçleri yönlendirdiğini göstermiştir.[4] Retinalofototroflar yaygın olmasına rağmen, araştırmalar onların da niş olabileceğini göstermiştir.[1][6] Okyanus yüzeyine olan yakınlıklarına bağlı olarak, retinalofototroflar ışığı belirli dalga boylarında absorbe etmede daha iyi olacak şekilde gelişmiştir.[1][6] En önemlisi, retinalofototrofların birincil üretici olarak yaygınlığı, deniz ortamlarının aşağıdan yukarıya destekleyiciliğine ve sonuç olarak dünya çapında direy(fauna) ve bitey(flora) ergisine önemli ölçüde katkıda bulunur.[1][6]

Kaynakça

  1. ^ a b c d e f g h i j Béjà, Oded; Spudich, Elena N.; Spudich, John L.; Leclerc, Marion; DeLong, Edward F. (June 2001). "Proteorhodopsin phototrophy in the ocean". Nature (İngilizce). 411 (6839). ss. 786-789. doi:10.1038/35081051. ISSN 0028-0836. 25 Mayıs 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 9 Ocak 2021. 
  2. ^ a b c d Chew, Aline Gomez Maqueo; Bryant, Donald A (October 2007). "Chlorophyll Biosynthesis in Bacteria: The Origins of Structural and Functional Diversity". Annual Review of Microbiology (İngilizce). 61 (1). ss. 113-129. doi:10.1146/annurev.micro.61.080706.093242. ISSN 0066-4227. 14 Ekim 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 9 Ocak 2021. 
  3. ^ a b c d e f g h i j k Hallenbeck, Patrick C., (Ed.) (2017). "Modern Topics in the Phototrophic Prokaryotes". doi:10.1007/978-3-319-51365-2. 
  4. ^ a b c d e f g h i j k l m n o "Academic Press encyclopedia of physical science and technology, 2nd ed". Choice Reviews Online. 35 (02). 1 Ekim 1997. ss. 35-0665-35-0665. doi:10.5860/choice.35-0665. ISSN 0009-4978. 
  5. ^ a b c Burnap, Robert; Wim, Vermaas (2012). Functional Genomics and Evolution of Photosynthetic Systems. Springer Netherlands. 
  6. ^ a b c d e Gómez-Consarnau, Laura; Raven, John A.; Levine, Naomi M.; Cutter, Lynda S.; Wang, Deli; Seegers, Brian; Arístegui, Javier; Fuhrman, Jed A.; Gasol, Josep M.; Sañudo-Wilhelmy, Sergio A. (August 2019). "Microbial rhodopsins are major contributors to the solar energy captured in the sea". Science Advances (İngilizce). 5 (8). ss. eaaw8855. doi:10.1126/sciadv.aaw8855Özgürce erişilebilir. ISSN 2375-2548. 
  7. ^ a b c Graham, Joel E.; Bryant, Donald A. (15 Aralık 2008). "The Biosynthetic Pathway for Synechoxanthin, an Aromatic Carotenoid Synthesized by the Euryhaline, Unicellular Cyanobacterium Synechococcus sp. Strain PCC 7002". Journal of Bacteriology (İngilizce). 190 (24): 7966-7974. doi:10.1128/JB.00985-08Özgürce erişilebilir. ISSN 0021-9193. 9 Temmuz 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 9 Ocak 2021. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Biyoloji</span> canlıları inceleyen bilim dalı

Biyoloji ya da dirim bilimi, yaşamın bilimsel olarak incelenmesidir. Geniş bir kapsama sahip bir doğa bilimidir ancak onu tek ve tutarlı bir alan olarak birbirine bağlayan birkaç birleştirici teması vardır. Örneğin, tüm organizmalar, gelecek nesillere aktarılabilen genlerde kodlanmış kalıtsal bilgileri işleyen hücrelerden oluşur. Bir diğer ana tema ise yaşamın birliğini ve çeşitliliğini açıklayan evrimdir. Enerji işleme, organizmaların hareket etmesine, büyümesine ve çoğalmasına izin verdiği için yaşam için de önemlidir. Son olarak, tüm organizmalar kendi iç ortamlarını düzenleyebilmektedir.

<span class="mw-page-title-main">Fotosentez</span> bitki ve organizmalar tarafından ışık enerjisinin kimyasal enerjiye dönüştürülme işlemi

Fotosentez, bitkiler ve diğer canlılar tarafından, ışık enerjisini organizmaların yaşamsal eylemlerine enerji sağlamak için daha sonra serbest bırakılabilecek kimyasal enerjiye dönüştürmek için kullanılan bir işlemdir. Bu kimyasal enerji, karbondioksit ve sudan sentezlenen şekerler gibi karbonhidrat moleküllerinde depolanır.

<span class="mw-page-title-main">Ototrof</span> genellikle ışıktan gelen enerjiyi (fotosentez) veya inorganik kimyasal reaksiyonları (kemosentez) kullanarak çevresinde bulunan basit maddelerden karmaşık organik bileşikler (karbonhidratlar, yağlar ve proteinler gibi) üreten organizma

Bir ototrof, karbondioksit gibi basit maddelerden karbon kullanarak, genellikle ışıktan (fotosentez) veya inorganik kimyasal reaksiyonlardan (kemosentez) gelen enerjiyi kullanarak karmaşık organik bileşikler üreten bir organizmadır. Abiyotik bir enerji kaynağını organik bileşiklerde depolanan ve diğer organizmalar tarafından kullanılabilen enerjiye dönüştürürler. Ototroflar canlı bir karbon veya enerji kaynağına ihtiyaç duymazlar ve karadaki bitkiler veya sudaki algler gibi bir besin zincirindeki üreticilerdir. Ototroflar karbondioksiti indirgeyerek biyosentez için organik bileşikler ve depolanmış kimyasal yakıt yapabilirler. Çoğu ototrof indirgeyici madde olarak su kullanır, ancak bazıları hidrojen sülfür gibi diğer hidrojen bileşiklerini de kullanabilir.

<span class="mw-page-title-main">Mitokondri</span> Ökaryotik hücrelerde solunumdan sorumlu organel

Mitokondri, hücre organellerinden biridir. Yunanca mitos (iplik) ve khondrion (tane) sözcüklerinden türetilmiştir. Boyları 0,2-5 mikron arasında değişir. Şekilleri ise ovalden çubuğa kadar değişkenlik göstermektedir. Bazı hücreler tek bir büyük mitokondri içerebilse de mitokondriler hücrelerde çoğunlukla fazla sayılardadır. Sayıları hücrenin enerji ihtiyacına göre değişir. Özellikle kas ve sinir hücreleri gibi enerji ihtiyacı fazla olan hücrelerde çok sayıda mitokondri bulunur. Bir karaciğer hücresinde sayıları 2500 civarına ulaşabilir.

<span class="mw-page-title-main">Protein biyosentezi</span>

Protein biyosentezi, hücrenin protein sentezlenmesi için gereken bir biyokimyasal süreçtir. Bu terim bazen sadece protein translasyonu anlamında kullanılsa da transkripsiyon ile başlayıp translasyonla biten çok aşamalı bir süreçtir. Prokaryotlarda ve ökaryotlarda ribozom yapısı ve yardımcı proteinler bakımından farklılık göstermesine karşın, temel mekanizma korunmuştur.

<span class="mw-page-title-main">Adenozin trifosfat</span> organik bileşi

'Adenozin trifosfat, hücre içinde bulunan çok işlevli bir nükleotittir. İngilizce Adenosine Triphosphateden ATP olarak kısaltılır. En önemli işlevi hücre içi biyokimyasal reaksiyonlar için gereken kimyasal enerjiyi taşımaktır. Fotosentez ve hücre solunumu sırasında oluşur. ATP bunun yanı sıra RNA sentezinde gereken dört monomerden biridir. Ayrıca ATP, hücre içi sinyal iletiminde protein kinaz reaksiyonu için gereken fosfatın kaynağıdır. 3 tane fosfattan oluşur.

Oksidatif fosforilasyon, canlılarda enerji kaynağı olarak kullanılan ATP sentezinde kullanılan yollardan biridir. Fosforilasyon olarak da adlandırılan ATP sentezi başlıca dört yoldan gerçekleştirilir.

<span class="mw-page-title-main">Oksijenli solunum</span> Hücresel solunum

Oksijenli solunum, organik besinlerden oksijen yoluyla ATP elde etme işidir. Hücrelerdeki bazı kimyasal tepkimelerde kullanılan enerjinin oksijen kullanılarak açığa çıkarılması demektir. Biyoloji ders kitapları sık sık hücresel solunum sırasında glikoz molekülü başına 38 ATP molekülü üretildiğini söylese de sızıntılı zarların yanı sıra mitokondriyal matrikse pirüvat ve ADP hareketinin maliyetinden dolayı %100 verim olamayacağından bu sayıya asla ulaşılmaz, mevcut tahminler glikoz başına 29 ilâ 30 ATP dolayındadır.

<span class="mw-page-title-main">Gece körlüğü</span> göz hastalığı

Retinitis pigmentosa (RP), halk arasında tavuk karası ve gece körlüğü adlarıyla bilinen ve görme kaybına neden olan genetik bir göz hastalığıdır. Her 4.000 kişide 1'i etkilediği tahmin edilmektedir.

<span class="mw-page-title-main">Aktif taşıma</span>

Aktif taşıma, küçük moleküllerin, az yoğun ortamdan çok yoğun ortama ATP harcanarak geçişidir. Aktif taşımada, hücre zarı üzerindeki porlardan geçebilecek büyüklükteki moleküller, taşıyıcı protein ve taşıyıcı enzimler yardımıyla taşınır. Taşıma sırasında enerji kullanıldığı için sadece canlı hücrelerde gerçekleşebilir. Hücre içinden hücre dışına, hücre dışından hücre içine olmak üzere her iki yönde de gerçekleşebilir.

<span class="mw-page-title-main">Heterotrof</span> besinlerini kendi kendilerine sentezleyemeyen canlılar

Dışbeslenen, dışbeslek, ardıbeslek ya da heterotrof canlılar; besinlerini kendi kendilerine sentezleyemeyen canlılardır. Yaşamlarını sürdürmek için gerekli enerjiyi bu sebeple diğer dışbeslenen ya da kendibeslek canlılardan alması gerekir. Heterotrof terimi mikrobiyoloji alanında ilk kez 1946 yılında, mikroorganizmaların beslenme tiplerine göre sınıflamasında kullanılmıştır. Bugün ise terim besin zincirinin tanımlanmasında birçok alanda kullanılmaktadır.

Elektron taşıma sistemi veya elektron taşıma zinciri (İngilizce: Electron Transport System), NADH ve FADH2 gibi elektron taşıyıcılarının verdikleri elektronları ETS elemanlarında redoks tepkimelerine sokarak ATP üretimini sağlayan sistemin adıdır.Kristada bulunur.Kıvrımlı olan zar yüzeyinin genişlemesini saglar.Böylece enzimlerin etkinliklerinin artmasına olanak sağlar.Elektronlar, son elektron alıcısı oksijene varana kadar ETS elemanları boyunca taşınırlar ve enerji kaybederler. Elektronların verdiği enerji ETS elemanları tarafından protonların aktif taşınmasında kullanılır ve ETS elemanlarının üzerinde bulunduğu çift katlı fosfolipid zarının iki tarafında potansiyel fark oluşturulur. Bu potansiyel fark daha sonra ATP sentezi için kullanılır. Burada ATP sentezi H+ iyonlarının derişim farklılığına bağlı olarak dışarı pompalanır. Bu sırada ATP sentez enzimi aktifleşir ve ATP sentezlenir. ETS elemanları, ökaryotik hücrelerde mitokondri ve kloroplast organellerinde bulunur.

<span class="mw-page-title-main">Kemiosmoz</span> Hücresel solunumu sağlayan elektrokimyasal prensip

Kemiosmoz; iyonların, elektrokimyasal gradyanı azaltmak için seçici geçirgen bir zardan geçme hareketidir. Hücresel solunumdaki ATP sentezinin gerçekleşmesini sağlayan enerjinin büyük bir kısmı hidrojenlerin yaptığı bu hareketten karşılanır.

<span class="mw-page-title-main">Retinal</span> kimyasal bileşik

Retinal, retinaldehit olarak da bilinir. Başlangıçta retinen olarak adlandırılmıştı ve A vitamini aldehiti olduğu keşfedildikten sonra yeniden adlandırıldı. Retinal, A vitamininin birçok vitamerinden biridir. Retinal, opsin olarak adlandırılan proteinlere bağlanan ve hayvanlarda görme olayının kimyasal temeli olan bir polien kromoforudur. Retinal bazı mikroorganizmalarda ışığın metabolik enerjiye dönüşmesini sağlar.

<span class="mw-page-title-main">Fototrof</span> Metabolik süreçlerde ışık enerjisi kullanan organizma

Fototroflar (Yunanca: φῶς, φωτός = ışık, τροϕή = beslenme) karmaşık organik bileşikler (karbonhidratlar gibi) üretmek ve bundan enerji elde etmek için foton yakalayan organizmalardır. Hücresel çeşitli metabolik süreçleri gerçekleştirmek için ışıktan gelen enerjiyi kullanırlar. Fototrofların zorunlu olarak fotosentetik olduğu yaygın bir yanılgıdır. Hepsi olmasa da birçok fototrof sıklıkla fotosentez yapar: karbon dioksiti yapısal olarak, fonksiyonel olarak veya daha sonraki katabolik süreçler için bir kaynak olarak (örneğin nişasta, şeker ve yağ şeklinde) kullanılmak üzere anabolik olarak organik maddeye dönüştürürler. Tüm fototroflar, hücrenin moleküler enerji birimini(ATP) oluşturmak adına ATP sentaz tarafından kullanılan elektrokimyasal bir devinim oluşturmak için elektron taşıma sistemini veya doğrudan proton pompalamayı kullanır. Fototroflar, ototrof ya da heterotrof olabilir. Elektron ve hidrojenin kaynağı inorganik bileşikler ise (örn. Na2S2O3, bazı mor kükürt bakterilerinde olduğu gibi veya H2S, bazı yeşil kükürt bakterilerinde olduğu gibi) bunlara litotroflar da denebilir ve bu nedenle bazı fotoototroflara fotoliotoototroflar da denir. Fototrof organizmalarına örnekler: Rhodobacter capsulatus, Chromatium, Chlorobium vb.

<span class="mw-page-title-main">Fotosistem II</span>

Fotosistem II, oksijenli fotosentezin ışığa bağlı reaksiyonlarındaki ilk protein kompleksidir. Bitkilerin, alglerin ve siyanobakterilerin tilakoid zarında bulunur. Fotosistem içinde, enzimler elektronlara enerji vermek için ışığın fotonlarını yakalar. Daha sonra bu elektronlar plastokinonu plastokuinole indirgemek için çeşitli koenzimler ve kofaktörler aracılığıyla fotosistem II tarafından kullanılır. Enerji verilen elektronlar, hidrojen iyonları ve moleküler oksijen oluşturmak için suyu oksitleyerek değiştirilir.

Fotoheterotroflar heterotrofik fototroflardır - yani ışığı enerji için kullanan, ancak karbondioksiti tek karbon kaynağı olarak kullanamayan organizmalardır. Sonuç olarak, karbon gereksinimlerini karşılamak için çevreden organik bileşikler alırlar; bu bileşikler arasında karbonhidratlar, yağ asitleri ve alkoller bulunur. Fotoheterotrofik organizmaların örnekleri arasında mor kükürt ve yeşil kükürt olmayan bakteriler ve heliobakteriler bulunur. Yakın zamanda yapılan araştırmalar, Doğu Eşekarısı ve bazı yaprak bitlerinin enerji kaynaklarını desteklemek için ışığı kullanabilecekleri belirtilmiştir.

<span class="mw-page-title-main">Çubuk hücreleri</span> Photoreceptor cells that can function in lower light better than cone cells

Çubuk hücreleri, gözün retinasında bulunan ve diğer görsel fotoreseptör tipi olan koni hücrelerinden daha düşük ışıkta daha iyi işlev görebilen fotoreseptör hücrelerdir. Çubuklar genellikle retinanın dış kenarlarında konsantre olarak bulunur ve çevresel görüşte kullanılır. Ortalama olarak, insan retinasında yaklaşık 92 milyon çubuk hücre vardır. Çubuk hücreler, koni hücrelerden daha hassastır ve gece görüşünden neredeyse tamamen sorumludur. Bununla birlikte, çubuk hücrelerinin renk görmede çok az rolü vardır, bu da renklerin loş ışıkta daha az belirgin olmasından kaynaklanmaktadır.

Kramp, ani, istemsiz bir kas kasılması veya aşırı kısalmasıdır; genellikle geçici ve zararsız olmakla birlikte, önemli derecede ağrıya ve etkilenen kasta felç benzeri hareketsizliğe neden olabilirler. Kas krampları yaygındır ve genellikle hamilelik, fiziksel egzersiz veya aşırı efor, yaş ile ilişkilidir veya bir motor nöron bozukluğunun bir işareti olabilir. Bir iskelet kasında veya düz kasta kramplar oluşabilir. İskelet kası kramplarına, kas yorgunluğu veya sodyum (hiponatrem) adı verilen bir durum), potasyum (hipokalem) adı verilen) veya magnezyum gibi elektrolitlerin eksikliği neden olabilir. Bazı iskelet kası kramplarının bilinen bir nedeni yoktur. Düz kas krampları regl veya gastroenterit nedeniyle olabilir.

Kuantum biyolojisi, kuantum mekaniğinin ve teorik kimyanın biyolojik nesnelere ve problemlere uygulamalarının incelenmesidir. Birçok biyolojik süreç, enerjinin kimyasal dönüşümler için kullanılabilen biçimlere dönüştürülmesini içerir ve doğası gereği kuantum mekaniktir. Bu tür süreçler, kimyasal reaksiyonları, ışık emilimini, uyarılmış elektronik durumların oluşumunu, uyarma enerjisinin aktarımını ve fotosentezi, koku almayı ve hücresel solunum gibi kimyasal süreçlerde elektron ve protonların aktarımını içerir.