İçeriğe atla

Reflektron

Reflektronun uçuş tüpüne (solda) bağlı bir iyon aynası (sağda). Bir metal plaka yığınına uygulanan gerilimler, iyonları uçuş tüpüne geri yansıtan elektrik alanını oluşturur.

Bir reflektron (kütle reflektronu), darbeli bir iyon kaynağı, alansız bölge, iyon aynası ve iyon dedektörü içeren ve içine giren iyonların hareket yönünü tersine çevirmek için iyon aynasında bulunan statik veya zamana bağlı bir elektrik alanı kullanan bir uçuş zamanı kütle spektrometresidir (TOF MS).

Geliştirme

Yansımada, daha yüksek enerjili iyon (kırmızı) daha uzun bir yol alır, ancak aynı kütlenin daha düşük enerjili iyonu (mavi) ile aynı anda detektöre ulaşır.

İyonların elektrik alanını geciktiren bir bölgeden yansımasını (iyon aynası) uygulayarak TOF MS'de kütle çözünürlüğünü geliştirme fikri ilk olarak Rus bilim adamı SG Alikhanov tarafından önerildi.[1] 1973'te, Boris Aleksandrovich Mamyrin'in laboratuvarında, iki homojen alanlı bir iyon aynası kullanan çift aşamalı bir reflektron yapıldı.[2][3] Reflektronun geniş kütle aralığında ölçülen kütle çözünürlüğü, darbeli bir iyon kaynağı, uçuş tüpü ve iyon detektörü içeren daha basit (doğrusal denilen) uçuş zamanı kütle spektrometresindekinden çok daha büyüktür. Reflektronda analiz edilen iyon kütleleri birkaç Dalton ile birkaç milyon Dalton arasında değişebilir. Fotoiyonizayon veya elektron iyonizasyonuyla, örneğin matris destekli lazer desorpsiyon/iyonizasyon kaynağı, vakumda üretilen iyonların analizi için kullanılan reflektrondaki duyarlılık kaynak sonrası bozulma nedeniyle doğrusal TOF MS'dekinden daha düşük olabilir.

Kaynakça

  1. ^ Alikhanov (1957). "A new impulse technique for ion mass measurement". Sov. Phys. JETP. 4: 452. 
  2. ^ Mamyrin (1973). "The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution". Sov. Phys. JETP. 37: 45. 
  3. ^ Mamyrin (22 Mart 2001), Time-of-flight mass spectrometry (concepts, achievements, and prospects), 206 (3), ss. 251-266, doi:10.1016/S1387-3806(00)00392-4 

Konuyla ilgili yayınlar

  • Cotter, Robert J. (1994), Time-of-flight mass spectrometry, Columbus, OH: American Chemical Society, ISBN 0-8412-3474-4 
  • Anna Radionova, Igor Filippov, Peter J Derrick (2015), "In pursuit of resolution in time-of-flight mass spectrometry: A historical perspective", Mass Spectrometry Reviews, Wiley Periodicals, Inc., Mass Specrometry Reviews, 35 (6), ss. 738-757, Bibcode:2016MSRv...35..738R, doi:10.1002/mas.21470, PMID 25970566 

· ·

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Enstrümental kimya</span>

Enstrümental analiz, analitleri bilimsel aletler (enstrümanlar) kullanarak inceleyen analitik kimya alanı.

<span class="mw-page-title-main">Kütle spektrometrisi</span> Kütle ölçer

Kütle spektrometrisi, İngilizce: Mass spectrometry (MS), kimyasal türleri iyonize edip oluşan iyonları Kütle-yük oranını esas alarak sıralayan bir analitik teknik. Daha basit terimler ile, bir kütle spektrumu bir numunen içindeki kütleleri ölçer. Kütle spektrometrisi birçok farklı alanda kullanılır ve kompleks karışımlara uygulandığı kadar saf numunelere de uygulanır.

<span class="mw-page-title-main">David E. Clemmer</span> araştırmacı

David E. Clemmer, Amerikalı analitik kimyager. Bloomington'daki Indiana Üniversitesi'nde Robert ve Marjorie Mann Kimya Kürsüsü başkanı ve Seçkin Profesör'dür. Bu üniversitede Clemmer Grubu'nun başındadır. Clemmer iyon-hareketliliği kütle spektrometrisi (IM-MS) için yeni bilimsel ekipmanlar geliştirir. Geliştirdiği ekipmanlar arasında ilk iç içe iyon-hareketliliği uçuş-zamanlı kütle spektroskmetrisi de vardır. Aralarında 2006'da "çeşitli kütle spektrometre teknolojileri için iyon hareketliliği ayırmanın entegrasyonuna yaptığı öncü katkıları için" kazandığı Biemann Madalyası'nın da bulunduğu çeşitli ödüller kazanmıştır.

<span class="mw-page-title-main">Sektör kütle spektrometresi</span>

Sektör enstrümanı, kütle analizörü olarak statik elektrik veya manyetik sektör veya ikisinin bir kombinasyonunu kullanan bir kütle spektrometresi sınıfı için kullanılan genel bir terimdir. Bu sektörlerin popüler bir kombinasyonu BEB (manyetik-elektrik-manyetik) olmuştur. Çoğu modern sektör enstrümanı, çift odaklı enstrümanlardır, iyon ışınlarını hem yöne hem de hıza odaklarlar.

<span class="mw-page-title-main">Elektrosprey iyonizasyon</span> İyon üretmek için kullanılan bir teknik

Elektrosprey iyonizasyon, bir aerosol oluşturmak için bir sıvıya yüksek voltajın uygulandığı bir elektrosprey kullanarak iyon üretmek için kütle spektrometresinde kullanılan bir tekniktir. Özellikle makromoleküllerden iyon üretiminde faydalıdır çünkü iyonize edildiğinde bu moleküllerin parçalanma eğiliminin üstesinden gelir.

<span class="mw-page-title-main">Matriks-destekli lazer desorpsiyon/iyonizasyonu</span>

Kütle spektrometrisinde, matris destekli lazer desorpsiyon/iyonizasyonu (MALDI), minimum parçalanma ile büyük moleküllerden iyonlar oluşturmak için bir lazer enerjisi emici matris kullanan bir iyonizasyon tekniğidir. Daha geleneksel iyonizasyon yöntemleriyle iyonize edildiğinde kırılgan olma ve parçalanma eğiliminde olan biyomoleküllerin ve büyük organik moleküllerin analizinde uygulanmıştır. Gaz fazında büyük moleküllerin iyonlarını elde etmenin nispeten yumuşak bir yolu olması bakımından elektrosprey iyonizasyonuna (ESI) benzer, ancak MALDI tipik olarak çok daha az sayıda çok-yüklü iyon üretir.

Sıvı kromatografi-kütle spektrometrisi, sıvı kromatografinin fiziksel ayırma yeteneklerini kütle spektrometrisinin (MS) kütle analizi yetenekleriyle birleştiren analitik bir kimya tekniğidir. Birleştirilmiş kromatografi - MS sistemleri, kimyasal analizde popülerdir çünkü her tekniğin bireysel yetenekleri sinerjik olarak geliştirilmiştir. Sıvı kromatografi, birden çok bileşenli karışımları ayırırken, kütle spektrometresi, yüksek moleküler özgüllük ve algılama hassasiyeti ile ayrı bileşenlerin yapısal kimliğini sağlar. Bu ikili teknik, çevresel ve biyolojik kaynaklı karmaşık örneklerde yaygın olarak bulunan biyokimyasal, organik ve inorganik bileşikleri analiz etmek için kullanılabilir. Bu nedenle, LC-MS, biyoteknoloji, çevre izleme, gıda işleme ve ilaç, tarım kimyası ve kozmetik endüstrileri dahil olmak üzere çok çeşitli sektörlerde uygulanabilir.

<span class="mw-page-title-main">Hızlı atom bombardımanı</span>

Hızlı atom bombardımanı, yüksek enerjili atomlardan oluşan bir ışının iyonlar oluşturmak için bir yüzeye çarptığı kütle spektrometrisinde kullanılan bir iyonizasyon tekniğidir. Michael Barber tarafından 1980 yılında Manchester Üniversitesi'nde geliştirilmiştir. Atomlar yerine yüksek enerjili iyon demeti kullanıldığında (ikincil iyon kütle spektrometrisinde olduğu gibi, yöntem sıvı ikincil iyon kütle spektrometrisi olarak adlandırlır. FAB ve LSIMS' de analiz edilecek malzeme matris adı verilen uçucu olmayan kimyasal koruma ortamı ile karıştırılır ve yüksek enerjili atom ışınıyla vakum altında bombardımana tutulur. Atomlar tipik olarak argon veya ksenon gibi bir inert gazlardandır. Yaygın matrisler arasında gliserol, tiogliserol, 3-nitrobenzil alkol, 18-taç-6 eter, 2-nitrofeniloktil eter, sülfolan, dietanolamin ve trietanolamin bulunur. Bu teknik, ikincil iyon kütle spektrometrisi ve plazma desorpsiyon kütle spektrometrisine benzer.

<span class="mw-page-title-main">Termosprey</span>

Termosprey, sıvı numunenin çözücü akışının çok ince ısıtılmış bir kolondan geçerek ince sıvı damlacıklardan oluşan bir sprey haline geldiği yumuşak bir iyonizasyon kaynağıdır. Kütle spektrometrisinde atmosferik basınç iyonizasyonunun bir biçimi olarak, bu damlacıklar daha sonra bir çözücü iyon plazması oluşturmak için düşük akımlı bir deşarj elektrodu aracılığıyla iyonize edilir. Oluşan bu yüklü parçacıkları süzgeçten ve hızlandırma bölgesinden geçirilir. Ardından aerosol haline getirilmiş numuneyi bir kütle spektrometresine girer. Termosprey özellikle sıvı kromatografi-kütle spektrometrisinde (LC-MS) faydalıdır.

<span class="mw-page-title-main">Silisyum üzerinde desorpsiyon/iyonizasyon</span>

Silikon üzerinde desorpsiyon/iyonizasyon (DIOS), kütle spektrometresi analizi için gaz fazı iyonları oluşturmak amacı ile kullanılan yumuşak bir lazer desorpsiyon yöntemidir. DIOS, ilk yüzey tabanlı yüzey destekli lazer desorpsiyon/iyonizasyon yaklaşımı olarak kabul edilir. Önceki yaklaşımlar, bir gliserol matrisinde nanopartiküller kullanılarak gerçekleştirilmiştir, DIOS ise nano yapılı bir yüzey üzerine bir numunenin biriktirildiği ve numunenin lazer ışığı enerjisinin adsorpsiyonu yoluyla nanoyapılı yüzeyden doğrudan desorbe edildiği matris içermeyen bir tekniktir. DIOS, organik molekülleri, metabolitleri, biyomolekülleri ve peptitleri analiz etmek ve nihayetinde dokuları ve hücreleri görüntülemek için kullanılmıştır.

<span class="mw-page-title-main">Uçuş süresi kütle spektrometrisi</span>

Uçuş zamanı kütle spektrometrisi (TOFMS), bir iyonun kütle-yük oranının bir uçuş zamanı ölçümüyle belirlendiği bir kütle spektrometresi yöntemidir. İyonlar, gücü bilinen bir elektrik alanı tarafından hızlandırılır. İyonun hızı, kütle-yük oranına bağlıdır. İyonun bilinen bir mesafede bir detektöre ulaşması için geçen süre ölçülür. Bu süre iyonun hızına bağlı olacaktır ve bu nedenle, iyonun kütle-yük oranının bir ölçüsüdür. Bu oran ve bilinen deneysel parametrelerden iyon tanımlanabilir.

<span class="mw-page-title-main">Ardışık kütle spektrometrisi</span>

MS/MS veya MS2 olarak da bilinen ardışık kütle spektrometresi, kimyasal numuneleri analiz etme yeteneklerini artırmak için iki veya daha fazla kütle analizörünün ek bir reaksiyon adımı kullanılarak birbirine bağlandığı enstrümantal analiz tekniğidir. Ardışık -MS'nin yaygın bir kullanımı, proteinler ve peptitler gibi biyomoleküllerin analizidir.

<span class="mw-page-title-main">Orbitrap</span>

Kütle spektrometrisinde Orbitrap, bir dış namlu benzeri elektrot ve iyonları milin etrafındaki yörünge hareketinde hapseden koaksiyel iç mil benzeri elektrottan oluşan bir iyon tuzağı kütle analizörüdür. Sıkışan iyonlardan gelen görüntü akımı tespit edilir ve frekans sinyalinin Fourier dönüşümü kullanılarak bir kütle spektrumuna dönüştürülür.

Kütle spektrometrisinde çözünürlük, bir kütle spektrumunda birbirine yakınkütle-yük oranları olan iki tepe noktasını ayırt etme yeteneğinin bir ölçüsüdür.

<span class="mw-page-title-main">Peptid kütle parmak izi alma</span>

Peptid kütle parmak izi alma, protein tanımlama için analitik bir tekniktir, burada ilgilenilen bilinmeyen protein ilk olarak daha küçük peptitlere bölünür ve bunların mutlak kütleleri MALDI-TOF veya ESI-TOF gibi bir kütle spektrometresi ile doğru bir şekilde ölçülebilir. Yöntem, 1993 yılında birkaç grup tarafından bağımsız olarak geliştirildi. Peptit kütleleri, bilinen protein dizilerini içeren bir veritabanı veya hatta genom ile karşılaştırılır. Bu, organizmanın bilinen genomunu proteinlere çeviren, daha sonra teorik olarak proteinleri peptidlere ayıran ve her bir proteinden peptidlerin mutlak kütlelerini hesaplayan bilgisayar programları kullanılarak sağlanır. Daha sonra, bilinmeyen proteinin peptitlerinin kütleleri, genomda kodlanmış her bir proteinin teorik peptit kütleleri ile karşılaştırılır. En iyi eşleşmeyi bulmak için sonuçlar istatistiksel olarak analiz edilir.

Üst-alt proteomik, kütle ölçümü ve ardışık kütle spektrometresi (MS/MS) analizi için izole edilmiş bir protein iyonunu depolamak üzere bir iyon yakalayıcı kütle spektrometresi veya MS/MS ile birlikte iki boyutlu jel elektroforezi gibi diğer protein saflaştırma yöntemlerini kullanan bir protein tanımlama yöntemidir. Üst-alt proteomik, yekpare haldeki proteinlerin analizi yoluyla benzersiz proteoformları tanımlama ve niceleme yeteneğine sahiptir. Kütle spektrometresi sırasında yekpare haldeki proteinler tipik olarak elektrosprey iyonizasyon ile iyonize edilir ve bir Fourier dönüşümü iyon siklotron rezonansı, kuadrupol iyon tuzağı veya Orbitrap kütle spektrometresinde tutulur. Ardışık kütle spektrometresi için parçalanma, elektron yakalama ayrışması veya elektron transfer ayrışması ile gerçekleştirilir. Etkili bir parçalanma, kütle spektrometresi tabanlı proteomikten önce numunenin işleme safyası için kritiktir. Proteom analizi rutin olarak yekpare haldeki proteinlerin sindirilmesini ve ardından kütle spektrometresi (MS) kullanılarak elde edilen protein tanımlamasını içerir. Üst-alt MS (jelsiz) proteomik, protein yapısını, yekpare haldeki bir kütlenin ölçümü ve ardından gaz fazında doğrudan iyon ayrışması yoluyla sorgular.

<span class="mw-page-title-main">Proton transfer tepkimesi kütle spektrometrisi</span>

Proton transfer tepkimesi kütle spektrometrisi, bir iyon kaynağında üretilen gaz fazı hidronyum reaktif iyonlarını kullanan bir analitik kimya tekniğidir. PTR-MS, ortam havasındaki uçucu organik bileşiklerin (VOC'lar) çevrimiçi olarak izlenmesi için kullanılır. Avusturya, Innsbruck'taki Leopold-Franzens Üniversitesi, Institut für Ionenphysik'teki bilim adamları tarafından 1995 yılında geliştirilmiştir. Bir PTR-MS cihazı, bir sürüklenme tüpüne doğrudan bağlanan bir iyon kaynağı ve bir analiz sisteminden oluşur. Ticari olarak temin edilebilen PTR-MS cihazlarının yanıt süresi yaklaşık 100 ms'dir ve tek haneli pptv veya hatta ppqv bölgesinde bir algılama sınırına ulaşırlar. Kullanılmakta olduğu uygulama alanları çevre araştırmaları, gıda ve lezzet bilimi, biyolojik araştırma, tıbbı ve diğerlerini içerir.

<span class="mw-page-title-main">Seçilmiş iyon akış tüpü kütle spektrometrisi</span>

Seçilmiş iyon akış tüpü kütle spektrometrisi, iz gaz analizi için bir kantitatif kütle spektrometresi tekniğidir ve bir akış tüpü boyunca iyi tanımlanmış bir süre boyunca seçilen pozitif öncü iyonlarla iz uçucu bileşiklerin kimyasal iyonizasyonunu içerir. Havada, solukta veya şişelenmiş sıvı numunelerin baş boşluğunda bulunan eser bileşiklerin mutlak konsantrasyonları, numune hazırlamaya veya standart karışımlarla kalibrasyona gerek kalmadan prekürsör ve ürün iyon sinyal oranlarının oranından gerçek zamanlı olarak hesaplanabilir. Ticari olarak temin edilebilen SIFT-MS cihazlarının algılama sınırı, tek haneli pptv aralığına kadar uzanır.

<span class="mw-page-title-main">Kütle (kütle spektrometrisi)</span>

Bir kütle spektrometresi tarafından kaydedilen kütle, aletin özelliklerine ve kütle spektrumunun görüntülenme şekline bağlı olarak farklı fiziksel büyüklükleri ifade edebilir.

Kızılötesi çoklu foton ayrışması, genellikle orijinal (ana) molekülün yapısal analizi için gaz fazındaki molekülleri parçalamak amacıyla kütle spektrometrisinde kullanılan bir tekniktir.