İçeriğe atla

Reel sayılar

Kontrol Edilmiş

Matematikte reel sayılar (gerçel ya da gerçek sayılar) kümesi, Fransızca réel “gerçek” den gelmektedir. Oranlı sayılar (rasyonel sayılar) kümesinin evrim sürecinden elde edilen bir varsayım kombinasyonudur. Reel sayılar kümesi sembolüyle gösterilir.[1]

Her oranlı sayı (rasyonel sayı) bir gerçek sayıdır; virgülden sonra bloklar halinde tekrar eden ondalık açılımı vardır (0 dahil). Örneğin,

eşitliğinde olduğu gibi. Burada dikkat edilmesi gereken, ondalık basamaklardaki rakamların bir süre sonra bloklar halinde periyodik tekrar etme özelliğidir. Bu şöyle ispatlanabilir: m, n iki tam sayı (n negatif) olsun. m/n oranlı sayısı ondalık ifade edilmek istendiğinde, m 'yi n 'ye bölerken (bölme algoritmasını varsayımı uygularken) ilk adımda kalan 0 ile n arasında olacaktır. Kalanın yanına sıfırlar ekleyip bölmeye devam edilecek ve bir sonraki adımda kalan yine 0 ile n arasında olacaktır. Sonsuz adımda sonlu sayıda değer alabilen kalanlar, bir süre sonra aynı değeri alacak ve kendini tekrar edecektir.[2]

Oranlı sayılardan gerçek sayıları elde etme işlemiyse oranlı sayılara ondalık açılımındaki rakamların devirsel tekrar etmediği sayıların eklenmesi olarak düşünülebilir. Bu tür sonradan elde ettiğimiz gerçek sayılara oransız sayılar veya irrasyonel sayılar denir.

İrrasyonel sayıların varlığı

Düzlemde herhangi bir doğru parçası alıp buna da birim (br) uzunluk diyelim. Tam sayılarla bu doğru parçasının katları birebir eşlensin. Alınan bir doğrunun üzerinde bu tam sayı uzunlukları ve olası tüm oranları (oranlı sayılar) işaretlensin. Gösterilebilir ki, herhangi iki oranlı sayı arasında sonsuz çoklukta oranlı sayı vardır. Demek oluyor ki, alınan doğru üzerinde birbirlerine istenildiği kadar yakın ve oranlı sayıları temsil eden iki nokta (oranlı nokta) arasında, sonsuz çoklukta oranlı nokta vardır.

Bu tür noktaların, dolayısıyla uzunlukların varlığını ispatlamak için, kenar uzunluğu 1 birim (br) olan bir karenin köşegen uzunluğunu (x) sayı doğrusu üzerinde işaretleyelim. x uzunluğu, oranlı bir sayı değildir, yani p ve q birer tam sayı olmak üzere p/q şeklinde gösterilemeyen bir sayıdır; bu sayı olarak gösterilecektir.

Kabul edelim ki x=p/q olsun. Bundan başka, bu kesrin artık kısaltılamayan bir kesir olduğunu farz edelim, yani p ve q aralarında asal olsunlar. Başka bir deyişle, bunların 1'den başka ortak bölenleri bulunmasın. Pisagor teoremi sayesinde x2=2=p2/q2 elde edilir. Dolayısıyla 2q2=p2 olur. p ve q aralarında asal olduğu için 2, p 'yi bölmek zorundadır. Böylece eşitliğin sağ tarafı 4'e bölünür. Sol tarafının da dörde bölünmesi gerekeceğinden q da 2'ye bölünmek zorunda kalır. Hem p hem de q sayıları 2'ye bölünebiliyorsa, aralarında asallık kabulüyle çelişkili bir sonuç bulunmuş olur. O halde x 'in oranlı bir sayı olduğu kabulünden vazgeçmek gerekecektir.

Bu ispat, bir Pisagorcu olan Hippasus'a atfedilmektedir (MÖ 5. yüzyıl). İrrasyonel sayıların varlığının ilk antik Yunan matematikçi Pisagor'un okulu tarafından anlaşılmış olduğu görüşü yaygındır. Fakat Pisagor bu sayıların evrenin düzenine aykırı olduğunu düşünmüş ve öğrencilerine bu sayıların varlığını açıklamayı yasaklamıştır. Rivayete göre Hippasus'u o öldürtmüştür.

Reel sayıların kurulması

İrrasyonel Sayılar ile oranlı sayılar kümesinin birleşimi Gerçel sayılar kümesini oluşturur. Bu kümeye reel sayılar veya gerçel sayılar da denir. Geometride karşılaşılan bazı büyüklüklerin anlamlandırılabilmesi için Klasik Yunan Dönemi'nde, yaygın inanca göre Pisagor ve öğrencileri tarafından sayı kavramına dâhil edilmişlerdir. Anlatılanlara göre Pisagor doğadaki tüm büyüklükleri rasyonel sayılarla ifade edilebileceğini söylemekteydi. Fakat bulduğu hipotenüs eşitliğinin bir sonucu olarak x2 = 2 gibi bir değerlerle karşılaştı. Uzun yıllar boyu bu tür sayıların uzun kesirlerle ifade edilebileceğini iddia etti ve göstermeye çalıştıysa da, öğrencilerinden birinin bu gibi sayıların kesinlikle kesirli bir biçimde gösterilemeyeceğini ispat etmesiyle ikna oldu ama hayatı boyu bunun bir sır gibi gizlenmesi için çalıştı ve doğada gerçel sayıların yeri olmadığını söylemeye devam etti. Gerçel sayılar kümesi R harfi ile ifade edilir.

Diğer bilgiler

  • Tam kare olmayan hiçbir doğal sayının karekökü oranlı değildir.
  • Oranlı sayılar kümesi sayılabilir olmasına karşılık gerçel sayılar kümesi sayılamazdır.
  • Gerçel sayılar "cebirsel sayıların elemanı olanlar" ve "aşkın sayılar" (transcendental) olarak ikiye ayrılırlar. Gerçel sayılar, cebirsel sayıları kapsamaz, fakat aşkın sayıları kapsar. Cebirsel bir gerçel sayı, tam sayı katsayılı bir polinomun kökü olabilen bir sayıdır; örneğin: x2 - 2 polinomunu 0 yapan değerlerden biri (kök) 'dir. x - 2 polinomunun kökü 2'dir. Dolayısıyla ve 2 cebirsel sayılardır. Ancak ve e sayıları gibi sayılar herhangi bir polinomun kökü olamazlar; bunlar aşkın sayılardır.

Ayrıca bakınız

Sayı sistemleri
Karmaşık
Reel
Rasyonel
Tam sayı
Doğal
Sıfır: 0
Bir: 1
Asal sayılar
Bileşik sayılar
Negatif tam sayılar
Kesir
Sonlu ondalık sayı
İkili (sonlu ikili)
Devirli ondalık sayı
İrrasyonel
Cebirsel irrasyonel
Aşkın
Sanal

Kaynakça

  1. ^ "real number". Oxford Reference (İngilizce). doi:10.1093/oi/authority.20110803100406944. 12 Temmuz 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Temmuz 2023. 
  2. ^ Weisstein, Eric W. "Real Number". mathworld.wolfram.com (İngilizce). 29 Şubat 2000 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Temmuz 2023. 

İlgili Araştırma Makaleleri

Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.

<span class="mw-page-title-main">Tam sayı</span> sıfırın sağında bulunan sayılar büyükken solunda bulunan sayılar küçüktür

Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.

<span class="mw-page-title-main">Aritmetik</span> temel matematik dalı

Aritmetik; matematiğin sayılar arasındaki ilişkiler ile sayıların problem çözmede kullanımı ile ilgilenen dalı. Aritmetik kavramı ile genellikle sayılar teorisi, ölçme ve hesaplama kastedilir. Bununla birlikte bazı matematikçiler daha karmaşık çeşitli işlemleri de aritmetik başlığı altında değerlendirirler.

<span class="mw-page-title-main">Rasyonel sayılar</span>

Rasyonel sayılar, iki tam sayı arasındaki oranı temsil eden, bir pay p ve sıfırdan farklı bir payda q olmak üzere, bir bölme işlemi veya kesir formunda ifade edilebilen sayıları tanımlar. Örneğin, rasyonel bir sayı olarak kabul edilir, bu kapsamda her tam sayı da rasyonel sayılar kategorisindedir. Rasyonel sayılar kümesi, çoğunlukla kalın harf biçimindeki Q veya karatahta vurgusu kullanılarak şeklinde ifade edilir.

<span class="mw-page-title-main">İrrasyonel sayılar</span> Irrasyonel

İrrasyonel sayılar, rasyonel sayılar kümesine dahil olmayan gerçek sayılardır. Payı ve paydası birer tam sayı olan bir kesir olarak ifade edilemeyen bu sayılara , , ve örnek verilebilir. veya ile gösterilir. Bu sayıların ondalık açılımı, kendini tekrar etmeden, sonsuza kadar sürer. Bu açılım irrasyonel sayıların hemen hemen hepsinde düzensizdir; ancak bir düzen de gösterebilir, örneğin bütün sayıların sırayla yazılmasıyla edilecek 0,12345678910111213... sayısı irrasyoneldir. İrrasyonel sayıların ilk gerçek değerini Archimedes kullanmıştır.

<span class="mw-page-title-main">Aşkın sayı</span>

Matematikte cebirsel olmayan herhangi bir karmaşık sayıya aşkın sayı denir. Diğer bir deyişle, rasyonel katsayılı bir polinomun kökü olmayan sayılara aşkın sayı denir. Buradan, tüm aşkın sayıların irrasyonel olduğu sonucuna varılabilir. Ancak tüm irrasyonel sayılar aşkın sayı değildir, örneğin irrasyoneldir, ancak polinomunun bir köküdür.

<span class="mw-page-title-main">Karekök</span>

Matematikte negatif olmayan bir gerçel sayısının temel karekök bulma işlemi şeklinde gösterilir ve karesi (bir sayının kendisiyle çarpılmasının sonucu) olan negatif olmayan bir gerçek sayıyı ifade eder.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

<span class="mw-page-title-main">Cebirsel sayılar</span>

Cebirsel sayılar, rasyonel katsayıları olan tek değişkenli sıfırdan farklı bir polinomun kökü olarak ifade edilebilen sayılardır. Mesela, altın oran, , cebirsel bir sayı örneğidir çünkü x2x − 1 polinomunun bir köküdür. Bu durumda, söz konusu polinomun değerinin sıfıra eşitlendiği x değeridir. Diğer bir örnek olarak, biçimindeki karmaşık sayı, x4 + 4 polinomunun bir kökü olduğundan dolayı cebirsel sayı olarak kabul edilir.

<span class="mw-page-title-main">Mesafe</span> ölçülebilir bir uzayda veya gözlemlenebilir bir fiziksel uzayda iki noktayı birleştiren düz çizginin uzunluğu

Mesafe (uzaklık), iki noktanın birbirlerinden ne kadar ayrı olduklarının sayısal ifadesidir. Metrik ölçüm sisteminde uzaklık birimi metredir ve m sembolü ile gösterilir.

i sayısı

Sanal birim ya da i sayısı, x2 = -1 eşitliğini sağlayan bir sayıdır. Reel sayılar kümesindeki hiçbir sayının karesi negatif olamayacağı için, bu ikinci dereceden denklemi sağlayan fakat reel sayılar kümesine ait olmayan böyle bir sayı, genellikle i notasyonu ile gösterilir. i sayısı, ℝ ile gösterilen reel sayılar kümesini ℂ ile gösterilen kompleks sayılar kümesine genişleten ve sabit olmayan her bir P(x) polinomu için en az bir kök sağlayan matematiksel bir kavramdır. "Hayali" terimi negatif kareye sahip gerçek sayı olmadığı için kullanılır.

Sayılar teorisinde Liouville sayıları, rasyonel sayılara sonsuz küçük yakınlıkta irrasyonel sayılardır. Bir Liouville sayısının her komşuluğunda bir rasyonel sayı vardır. Şu şekilde formüle edilebilir:

bir Liouville sayısı olsun. O zaman her sayma sayısı için öyle bir tam sayı ve sayma sayısı vardır ki,
<span class="mw-page-title-main">Alef sayısı</span>

Alef sayıları, matematikte, daha ayrıntılı söylemek gerekirse kümeler teorisinde, iyi sıralı olabilen sonsuz kümelerin kardinalitesini göstermek için kullanılan sayılardır. Alef sayısı ismini sembolünden, İbranice alef harfinden alır. Bazı eski matematik kitaplarında yanlışlıkla alef sembolü ters basılmıştır.

Matematiksel analizde, M metrik uzay olmak üzere, elemanları M 'de olan her Cauchy dizisinin yine M'de bir limiti varsa,veya alternatif olarak, M'deki her Cauchy dizisi yine M'de yakınsaksa M metrik uzayına tam denir.

<span class="mw-page-title-main">Hippasus</span>

Metapontumlu Hippasus veya Híppasos, Pisagorcu bir filozof ve matematikçi

Matematikte, Ruffini'nin kuralı, bir polinomun Öklid bölünmesinin x – r biçimindeki bir denklem ile kağıt kalemle hesaplanması için geliştirilmiş bir yöntemdir. 1804 yılında Paolo Ruffini tarafından tanımlanmıştır. Kural, bölenin doğrusal bir bölen olduğu özel bir sentetik bölme durumudur.

<span class="mw-page-title-main">Çizilebilir sayı</span> Cetvel ve pergel kullanılarak, geometrik olarak oluşturulabilen gerçek sayı

Çizilebilir sayı terimi, geometri ve cebirde kullanılır ve bir reel sayı 'nin, belirli koşullar altında bir çizgi olarak çizilebilip çizilemeyeceğini ifade eder. Eğer birim uzunlukta herhangi çizgiyi kullanarak, sadece pergel ve cetvel yardımıyla ve belirli sayıda adımda, r uzunluğunda bir başka çizgi çizebilirse, bu durumda r sayısı çizilebilir bir sayıdır. Başka bir deyişle, r sayısını, sadece tam sayıları ve temel matematik işlemleri ile karekök alma işlemini kullanarak açık bir şekilde ifade edebiliyorsa, r sayısı çizilebilir kabul edilir.

Cebirsel geometride, bir periyot, bir cebirsel fonksiyonun cebirsel bir tanım kümesi üzerinden integrali olarak ifade edilebilen bir sayıdır. Periyotların toplamları ve çarpımları kapanış prensibi gereği yine periyotlardır, böylece periyotlar bir halka oluştururlar.

<span class="mw-page-title-main">Hesaplanabilir sayı</span>

Matematikte, hesaplanabilir sayılar, belirlenen herhangi bir doğruluk seviyesine ulaşacak şekilde sonlu ve sona eren bir algoritma ile hesaplanabilen reel sayıları ifade eder. Bu sayılar, yinelemeli sayılar, etkili sayılar ya da hesaplanabilir reel sayılarolarak da adlandırılır. Hesaplanabilir reel sayılar kavramı, o dönemde mevcut olan sezgisel hesaplanabilirlik kavramı üzerinden Emile Borel tarafından 1912'de ortaya konmuştur.