İçeriğe atla

Rassal Kahin

Şifrelemede rassal kahin, kendisine yapılan her sorguya, çıktı uzayından (gerçekten) rastgele, eşit olasılıkla seçilmiş, fakat her bir ayrı sorguya her seferinde aynı şekilde cevap veren bir kahin (kuramsal bir kara kutu)'dur. Başka bir deyişle, rassal kahin olası her bir sorguyu çıktı uzayından rastgele bir yanıta eşleyen matematiksel bir fonksiyondur.

Rassal kahinler, şifreleme bilimindeki kanıtlarda kullanılan bir matematiksel soyutlamadır; bunlar genellikle kanıtın gerektirdiği matematiksel özellikleri sağlayan bilinen gerçeklenebilir bir fonksiyon bulunmadığında kullanılmaktadır. Bu şekilde kanıtlanarak güvenli olduğu gösterilen bir sistem standart modeldeki güvenli kavramına karşılık olarak rassal kahin modelinde güvenli olarak tanımlanır. Uygulamada, rassal kahinler genellikle özet fonksiyonunun çıktısı hakkında güçlü rassal varsayımların gerektiği şemalara sahip şifreleme özüt fonksiyonlarını modellemek amacıyla kullanılır. Böyle bir kanıt, genel olarak bir sistemin veya bir protokolün, bir saldırganın protokolü kırabilmesi için ya kahinden olanaksız bir davranış görmesi gerektiğini ya da zor olduğuna inanılan matematiksel bir problemi çözmesi gerektiğini göstererek güvenli olduğunu gösterir. Bütün şifreleme özüt fonksiyonları rasssal kahinler gerektirmez: sadece çakışma dirençlilik özelliğini gerektiren şemaların standart modelde güvenliliği kanıtlanabilir (örn. Cramer-Shoup şifreleme sistemi).

Rassal kahinler Karmaşıklık Kuramında uzun zamandır kabul görmüştür. (örn. Bennett & Gill[1]). Fiat ve Shamir (1986)[2] imza üretimi protokollerinden etkileşimin çıkarılması konusunda rasssal kahinlerin önemli bir uygulamasını yapmışlardır. Impagliazzo ve Rudich (1989)[3] sadece rasssal kahinlerin varlığının gizli anahtar değişimi için yeterli kanıt olmadığını söyleyerek rasssal kahin modelinin sınırlarını göstermişlerdir. Bellare ve Rogaway (1993)[4] şifreleme yapılarında onların kullanımını savunmuştur. Bu tanımda, rassal kahin istenilen uzunluğa kesilebilecek olan sonsuz uzunlukta bir bit-dizgesi üretir. Bir rassal kahin bir güvenlik kanıtı içinde kullanıldığında, rakip ya da rakipler de dahil olmak üzere tüm oyuncular için kullanılabilir durumdadır. Tek bir rassal kahine her sorgudan önce sabit bir bit-dizgesi eklenerek (örn. başına "1|x" ya da "0|x" eklenmiş sorgular iki ayrı rassal kahine yapılmış gibi, benzer olarak "00|x", "01|x", "10|x" ve "11|x" eklenmiş sorgular da dört ayrı rassal kahine yapılmış sorgular gibi kabul edilebilir) birden fazla kahin gibi davranılabilir.

Hiçbir gerçek fonksiyon gerçek bir rassal kahini gerçekleyemez. Aslında, rassal kahin modelinde güvenliliği kanıtlanmış olan bazı yapay imza ve şifreleme şemalarının, rassal kahin yerine herhangi bir gerçek fonksiyon kullanıldığında basitçe güvensiz olduğu bilinmektedir.[5] Bununla birlikte, herhangi bir daha doğal protokol için rassal kahin modelindeki bir güvenlik kanıtı, varsa (tamsayıların çarpanlara ayrılmasının zorluğu gibi) kanıtın diğer varsayımlarını kırmayan herhangi bir saldırının protokolde kullanılan özüt fonksiyonunun bilinmeyen ve istenmeyen bir özelliğini keşfetmesini gerektiren çok güçlü göstergeler sunar. Birçok şemanın rassal kahin modelinde güvenli olduğu gösterilmiştir, örnek olarak OAEP ve PSS verilebilir.

Ayrıca bakınız

  • Kahin makinesi
  • Standart Model (şifreleme)
  • Şifreleme içerisindeki konular

Kaynakça

  1. ^ Bennett, Charles H.; Gill, John (1981), "Relative to a Random Oracle A, P^A != NP^A != co-NP^A with Probability 1", SIAM Journal on Computing, 10 (1), ss. 96-113, ISSN 1095-7111 
  2. ^ Amos Fiat and Adi Shamir: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. CRYPTO 1986: pp. 186-194
  3. ^ Russell Impagliazzo and Steven Rudich: Limits on the Provable Consequences of One-Way Permutations STOC 1989: pp. 44-61
  4. ^ Mihir Bellare and Phillip Rogaway, Random Oracles are Practical: A Paradigm for Designing Efficient Protocols, ACM Conference on Computer and Communications Security 1993, pp. 62–73 (PS and PDF 4 Mayıs 2008 tarihinde Wayback Machine sitesinde arşivlendi.).
  5. ^ Ran Canetti, Oded Goldreich and Shai Halevi, The Random Oracle Methodology Revisited, STOC 1998, pp. 209–218 (PS and PDF).

Dış bağlantılar

İlgili Araştırma Makaleleri

Sözde rassal (rastgele) sayı üreteci, öğeleri arasında kolay kolay ilişki kurulamayacak bir sayı dizisi üreten algoritma türlerine verilen genel isimdir.

<span class="mw-page-title-main">Diferansiyel denklem</span>

Matematikte, diferansiyel denklem, bir ya da birden fazla fonksiyonu ve bunların türevlerini ilişkilendiren denklemdir. Fizik, kimya, mühendislik, biyoloji ve ekonomi alanlarında matematiksel modeller genellikle diferansiyel denklemler kullanılarak ifade edilirler. Bu denklemlerde, fonksiyonlar genellikle fiziksel ya da finansal değerlere, fonksiyon türevleriyse değerlerin değişim hızlarına denk gelir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Monte Carlo yöntemi</span>

Monte Carlo benzetimi, çok sayıda tekrarlanan rastgele örneklemelerle, bir takım nümerik sonuçlar elde etmeye yarayan ve bilimin birçok alanında yaygın olarak kullanılan bir sayısal hesaplama algoritmaları sınıfıdır. Stokastik olayların yer aldığı fiziksel süreçlerin sonuçlarının tahmin edilmesinde çok kullanışlıdır. Ayrıca, rastgele seçimlerin işe yaradığı ve prensipte deterministik olan bir takım problemlerin çözümünde de kullanılmaktadır. Monte-Carlo yöntemi, Nicholas Constantine Metropolis (1915-1999) tarafından bulunmuştur ve Atom bombasının geliştirildiği Los Alamos Ulusal Labratuvarında, bombanın patlamasından sonra dağılan nötronlara karşı kalkan modellemek için Stanislaw Ulam tarafından günümüze taşınmıştır.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

<span class="mw-page-title-main">Büyük sayılar yasası</span>

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

ElGamal şifrelemesi, Diffie-Hellman anahtar alış-verişi'ne dayanan bir asimetrik şifreleme algoritması olup Taher Elgamal tarafından 1984 yılında önerilmiştir.

<span class="mw-page-title-main">Doğrusal olmayan regresyon</span>

Doğrusal olmayan regresyon, istatistik bilimde gözlemi yapılan verilerin bir veya birden fazla bağımsız değişkenin model parametrelerinin doğrusal olmayan bileşiği olan ve bir veya daha çok sayıda bağımsız değişken ihtiva eden bir fonksiyonla modelleştirilmesini içeren bir regresyon (bağlanım) analizi türüdür. Veriler arka-arkaya yapılan yaklaşımlarla kurulan modele uydurularak çözümleme yapılır.

Anlamsal güvenlik bir açık anahtarlı şifreleme sistemindeki güvenliği tanımlamak için sık kullanılan bir ifadedir. Bir şifreleme sisteminin anlamsal olarak güvenli olması için, hesaplama yetenekleri sınırlı olan bir saldırganın, elinde sadece şifreli metin ve buna karşılık gelen açık anahtar bulunduğunda, gizli metin hakkında önemli bilgi çıkartabilmesinin uygulanabilir olmaması gerekir. Anlamsal güvenlik sadece "edilgin" saldırgan durumunu inceler, örn. bir kişinin açık anahtarı kullanarak sadece seçtiği açık metinlere karşılık gelen şifreli metinleri incelediği durum. Diğer güvenlik tanımlamaları gibi, anlamsal güvenlik, saldırganın seçtiği bazı şifreli metinlerin açık hallerini elde edebildiği seçilen şifreli metin saldırısı durumunu göz önünde bulundurmaz ve birçok anlamsal güvenlik şifreleme şemalarının seçilen şifreli metin saldırısına karşı güvensizliği gösterilebilir. Sonuç olarak anlamsal güvenlik genel bir şifreleme şemasının güvenliğini tanımlamak için yetersiz sayılır.

<span class="mw-page-title-main">Kriptografik özet fonksiyonu</span>

Kriptografik özet fonksiyonu çeşitli güvenlik özelliklerini sağlayan bir özet fonksiyonudur. Veriyi belirli uzunlukta bir bit dizisine, (kriptografik) özet değerine, dönüştürür. Bu dönüşüm öyle olmalıdır ki verideki herhangi bir değişiklik özet değerini değiştirmelidir. Özetlenecek veri mesaj, özet değeri ise mesaj özeti veya kısaca özet olarak da adlandırılır.

Kriptografide blok şifreleme, blok olarak adlandırılmış sabit uzunluktaki bit grupları üzerine simetrik anahtar ile belirlenmiş bir deterministik algoritmanın uygulanmasıdır. Blok şifreleme birçok kriptografik protokol tasarımının önemli temel bileşenlerindendir ve büyük boyutlu verilerin şifrelemesinde yaygın biçimde kullanılmaktadır.

Probabilistik kriptosistem şifreleme algoritması içinde rastgeleselliğin kullanımıdır böylece aynı mesaj birçok kez şifrelendiğinde genel olarak farklı şifreli metinler üretecektir.

<span class="mw-page-title-main">Gerçek rassal sayı üreteci</span>

Programlama alanında kullanılan donanım rassal sayı üreteci bilgisayar programı kullanmayarak, fiziksel bir işleyiş ile rassal sayı üretimi için kullanılır. Bu tip cihazlar genel olarak mikroskobik olay tabanlı, istatistiksel olarak rassal gürültü sinyalleri içeren; ısıl gürültü, fotoelektrik etkisi kullanan hüzme bölücü ve diğer kuantum etkisi içeren olayları kullanır. Bu stokastik süreçler, teoride önceden kestirilemez ve teorinin öne sürdüğü sava göre deneysel test sonuçlarına tabiidir. Bir donanım rassal sayı üreteci genel olarak bir tip fiziksel bir gücü elektrik sinyaline dönüştürmek için güç çevirici, rassal dalgalanma genliklerini ölçülebilir seviyelere getirebilmek için güç yükselteç ve diğer elektrik devreleri ve de çıkışı sayısal bir veriye dönüştürebilmek için bir çeşit analog sayısal çevirici içerir. Genel olarak elde edilen sayı ikili sayı sisteminin elemanları olan 0 veya 1 dir. Arka arkaya alınan rassal değişen sayı örnekleri sayesinde sıralı olarak rassal sayılar elde edilir.

Kriptografi 'de bir 'Lamport imzası' veya 'Lamport bir defalık imza şeması' dijital imza oluşturmak için kullanılan bir yöntemdir. Lamport imzaları, kriptografik olarak güvenli herhangi bir tek yönlü fonksiyon ile oluşturulabilir; genellikle bir Kriptografik özet fonksiyonu kullanılır.

Kriptografide En İyi Asimetrik Şifreleme Doldurması (OAEP), bir doldurma (padding) şemasıdır ve sık sık RSA şifreleme ile birlikte kullanılır. OAEP, Bellare ve Rogaway tarafından tanıtılmıştır, ve daha sonra standart olarak PKCS#1 v2 ve RFC 2437'de yer verildi.

Kriptografide, biçim korumalı şifreleme, çıktı ve giriş aynı formatta olacak şekilde şifreleme anlamına gelir. "Biçim" in anlamı değişir. Biçimin anlamı için tipik olarak sadece sonlu alanlar tartışılır, örneğin:

Kimliği Doğrulanmış şifreleme (AE) ve İlgili Verilerle Kimliği Doğrulanmış Şifreleme (AEAD), aynı anda verilerin gizliliğini ve gerçekliğini garanti eden şifreleme biçimleridir

Kriptografide, bir ayırt edici saldırı, bir saldırganın şifreli verileri rastgele verilerden ayırt etmesini sağlayan bir şifreyle şifrelenmiş veriler üzerinde bulunan herhangi bir kriptanaliz biçimidir. Modern simetrik anahtar şifreleri, böyle bir saldırıya karşı bağışık olacak şekilde özel olarak tasarlanmıştır. Başka bir deyişle, modern şifreleme şemaları sözde rastgele permütasyonlardır ve şifreli metin ayırt edilemezliğine sahip olacak şekilde tasarlanmıştır. Çıktıyı rastgele bir brute force aramasından daha hızlı ayırt edebilen bir algoritma bulunursa, bu bir şifre kırılması olarak kabul edilir.

Seçilmiş şifreli metin saldırısı, kriptanalistin seçilen şifrelerin şifresini çözerek bilgi toplayabileceği kriptanaliz için bir saldırı modelidir. Bu bilgi parçalarından, saldırgan, şifre çözmek için kullanılan örtülü-gizli anahtarı kurtarmaya çalışabilir.