İçeriğe atla

Rafael Bombelli

Rafael Bombelli
Rafael Bombelli'nin L'Algebra adlı eseri: 1579 tarihli Bologna baskısının önsözü
DoğumRaffaele Bombelli
1526
Borgo Panigale
Ölüm1572 (46 yaşlarında)
Roma
Milliyetİtalyan
VatandaşlıkPapalık Devleti
Kariyeri
DalıMatematik, mühendislik

Rafael Bombelli (20 Ocak 1526 vaftiz edildi — ölümü 1572),[a][1][2] İtalyan bir matematikçiydi. Bologna'da doğmuştur, cebir üzerine bir eserin yazarıdır ve karmaşık sayıların anlaşılmasında temel ve önemli bir şahsiyettir.

Sonunda sanal veya karmaşık sayılarla ilgili problemi ele almayı başaran kişi oldu. Bombelli, 1572 tarihli L'Algebra adlı kitabında denklemleri del Ferro/Tartaglia yöntemini kullanarak çözdü. Temsili semboller olan +i ve -i'den önce gelen retoriği tanıttı ve her ikisinin de nasıl çalıştığını açıkladı.

Yaşamı

Rafael Bombelli, 20 Ocak 1526'da[3] Bologna, Papalık Devletleri'nde vaftiz edildi. Yün tüccarı Antonio Mazzoli ile bir terzinin kızı olan Diamante Scudieri'nin çocuğu olarak dünyaya geldi. Mazzoli ailesi, bir zamanlar Bolonya'da oldukça güçlüydü. Papa Julius II, 1506 yılında iktidara geldiğinde, yönetici aile olan Bentivoglioları sürgüne gönderdi. Bentivoglio ailesi 1508'de Bolonya'yı geri almaya çalıştı, ancak başarısız oldu. Rafael'in büyükbabası darbe girişimine katıldı ve yakalanıp idam edildi. Daha sonra Antonio, Mazzoli ailesinin ününden kaçmak için soyadını Bombelli olarak değiştirerek Bolonya'ya dönebildi. Rafael, altı çocuğun en büyüğüydü. Rafael, üniversite eğitimi almamış, bunun yerine Pier Francesco Clementi adında bir mühendis-mimar tarafından eğitilmiştir.

Bombelli, zamanının önde gelen matematikçilerinin cebir üzerine yazdığı eserlerin hiçbirinin konuyu dikkatli ve kapsamlı bir şekilde açıklamadığını düşünüyordu. Rafael, sadece matematikçilerin anlayabileceği başka bir dolambaçlı tez yerine, cebir üzerine herkesin anlayabileceği bir kitap yazmaya karar verdi. Metni kendi içinde tutarlı olacak ve yüksek öğrenim görmeyenler tarafından da kolayca okunabilecekti.

Bombelli, 1572 yılında Roma'da öldü.

Bombelli'nin Algebra adlı eseri

Algebra, 1572

Bombelli, 1572 yılında yayımlanan Algebra (“Cebir”) başlıklı kitabında, o dönemde bilinen cebirin kapsamlı bir açıklamasını yapmıştır. Negatif sayılarla hesaplama yapmanın yolunu yazan ilk Avrupalıydı. Aşağıda metinden bir alıntı yer almaktadır:

Plus times plus makes plus
Minus times minus makes plus
Plus times minus makes minus
Minus times plus makes minus
Plus 8 times plus 8 makes plus 64
Minus 5 times minus 6 makes plus 30
Minus 4 times plus 5 makes minus 20
Plus 5 times minus 4 makes minus 20

Artı çarpı artı, artı yapar
Eksi çarpı eksi artı yapar
Artı çarpı eksi eksi yapar
Eksi çarpı artı eksi yapar
Artı 8 çarpı artı 8, artı 64 yapar
eksi 5 çarpı eksi 6 artı 30 yapar
Eksi 4 çarpı artı 5 eksi 20 yapar
Artı 5 çarpı eksi 4 eksi 20 yapar

Bombelli, yukarıda da görüldüğü üzere, herkesin anlayabileceği basit bir dil kullanmıştır. Ama aynı zamanda, çok da titizdi.

Notasyon

Bombelli, ilk kez basılı bir metinde (Algebra adlı eserinin II. kitabında)

denkleminin

1U3 a. 6U1 p. 40.[4]

olarak göründüğü ve U3'ü üzerinde 3 rakamı olan kabarık bir çanak şeklinde (büyük U harfinin kavisli kısmı gibi) yazdığı bir indeks notasyonu biçimini tanıttı. Tam sembolik gösterim kısa bir süre sonra Fransız matematikçi François Viète tarafından geliştirildi.

Karmaşık sayılar

Ancak belki de cebirle ilgili çalışmalarından daha önemlisi, kitapta Bombelli'nin karmaşık sayılar teorisine yaptığı olağanüstü katkıların da yer almasıdır. Karmaşık sayılar hakkında yazmadan önce, formundaki denklemlerin çözümlerinde ortaya çıktıklarına işaret eder, kübiğin (üçündü derece denklemin) diskriminantının negatif olduğunu belirtmenin başka bir yoludur. Bu tür bir denklemin çözümü, bir sayının toplamının küp kökünü ve bazı negatif sayıların karekökünü almayı gerektirir.

Bombelli, sanal sayıları pratik olarak kullanmaya başlamadan önce, karmaşık sayıların özelliklerinin ayrıntılı bir açıklamasına girdi. Hemen ardından, sanal sayılar için aritmetik kurallarının gerçek sayılar için olanlarla aynı olmadığını açıkça ortaya koydu. Bu büyük bir başarıydı, çünkü kendisinden sonra gelen çok sayıda matematikçinin bile bu konuda kafası son derece karışıktı.

Bombelli, negatif sayıların kareköklerini diğer matematikçilerin yaptığı gibi normal radikaller olarak ele almak yerine bunlara özel bir isim vererek kafa karışıklığını önledi. Bu, söz konusu sayıların ne pozitif ne de negatif olduğunu açıkça ortaya koymuştur. Bu tür bir sistem Euler'in karşılaştığı karışıklığı önler. Bombelli, sanal i sayısını eksinin artısı olarak adlandırdı ve -i için eksinin eksisi ifadesini kullandı.

Bombelli, sanal sayıların kuartik (dördüncü derece) ve kübik denklemleri çözmek için çok önemli ve gerekli olduğunu görecek öngörüye sahipti. O zamanlar insanlar karmaşık sayıları sadece pratik denklemleri çözmek için bir araç olarak görüyorlardı. Bu nedenle Bombelli, Cardano gibi diğer matematikçilerin pes ettiği casus irreducibilis durumlarında bile Scipione del Ferro'nun kuralını kullanarak çözüm elde edebilmiştir.

Bombelli kitabında karmaşık aritmetiği şu şekilde açıklıyor:

Plus by plus of minus, makes plus of minus.
Minus by plus of minus, makes minus of minus.
Plus by minus of minus, makes minus of minus.
Minus by minus of minus, makes plus of minus.
Plus of minus by plus of minus, makes minus.
Plus of minus by minus of minus, makes plus.
Minus of minus by plus of minus, makes plus.
Minus of minus by minus of minus makes minus.

Artı eksinin artısı, eksinin artısı yapar.
Eksinin artısıyla eksi, eksinin eksisini yapar.
Artı eksinin eksisi, eksinin eksisini yapar.
Eksi eksinin eksisi, eksinin artısı yapar.
Artı eksi ile artı eksi, eksi yapar.
Eksi artı eksi eksi, artı yapar.
Eksi eksi artı eksi ile artı yapar.
Eksi eksi eksi eksi eksi yapar.

Bombelli, gerçek ve sanal sayıların çarpımını ele aldıktan sonra, toplama ve çıkarma kurallarından bahsetmeye devam eder. Gerçek kısımların gerçek kısımlara, sanal kısımların da sanal kısımlara eklendiğine dikkat çeker.

Takdir

Bombelli, genellikle karmaşık sayıların mucidi olarak kabul edilir, çünkü ondan önce hiç kimse bu tür sayılarla uğraşmak için kurallar koymamıştı ve hiç kimse sanal sayılarla çalışmanın yararlı sonuçlar doğuracağına inanmıyordu. Bombelli'nin Algebra kitabını okuduktan sonra Leibniz, Bombelli'yi “... analitik sanatın olağanüstü ustası” olarak övmüştür. Crossley, kitabında şöyle yazmaktadır: “Böylece, Cardan negatif sayıların kareköklerini işe yaramaz bulurken, Bombelli adında bir mühendis, belki de kendisine yararlı sonuçlar verdiği için karmaşık sayıları pratik olarak kullanmıştır. Bombelli karmaşık sayıları ilk kez ele alan kişidir. . . Karmaşık sayıların hesaplama yasalarını sunuşundaki titizliği dikkate değerdir.”[5]

Başarılarının onuruna bir Ay kraterine Bombelli adı verilmiştir.

Bombelli'nin karekök hesaplama yöntemi

Bombelli karekökleri hesaplamak için sürekli kesirler ile ilgili bir yöntem kullanmıştır. Henüz sürekli kesir kavramına sahip değildi ve aşağıda Pietro Cataldi (1613) tarafından verilen daha sonraki bir versiyonun algoritması bulunmaktadır.[6]

bulma yöntemi ve ile başlar ve buradan olduğu gösterilebilir. için sağ taraftaki ifadenin kendi içinde tekrarlanan ikamesi bir sürekli kesir verir:

ancak Bombelli daha çok için daha iyi yaklaşımlarla ilgilenmektedir. için seçilen değer, kareleri arasında kalan tam sayılardan biridir. Yöntem, için aşağıdaki yakınsakları verirken, gerçek değer 3,605551275... :

Son yakınsak 3,605550883... değerine eşittir. Bombelli'nin yöntemi, Heron ve Arşimet tarafından kullanılan formüller ve sonuçlarla karşılaştırılmalıdır. Arşimet'in değerini belirlerken kullandığı sonucu, 'nin başlangıç değerleri için 1 ve 0 kullanılarak bulunabilir.

Notlar

  1. ^ Tarihler Jülyen takvimini takip eder. Gregoryen takvimi 1582 yılında İtalya'da kabul edilmiştir (4 Ekim 1582'yi 15 Ekim 1582 takip etmiştir).

Kaynakça

  1. ^ "The Gregorian calendar". 27 Ekim 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Haziran 2024. 
  2. ^ Crossley 1987, s. 95.
  3. ^ "Rafael Bombelli". www.gavagai.de. 19 Kasım 2003 tarihinde kaynağından arşivlendi. 
  4. ^ Stedall, Jacqueline Anne (2000). A large discourse concerning algebra: John Wallis's 1685 Treatise of algebra (Tez). The Open University Press. 
  5. ^ Crossley 1987.
  6. ^ "Bombelli: Algebra". 6 Şubat 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Haziran 2024. 

Konuyla ilgili okumalar

Dış bağlantılar

İlgili Araştırma Makaleleri

Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.

<span class="mw-page-title-main">Tam sayı</span> sıfırın sağında bulunan sayılar büyükken solunda bulunan sayılar küçüktür

Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.

Matematikte cebirin temel teoremi karmaşık değişkenli polinomların köklerinin varlığıyla ilgili temel bir sonuçtur. D'Alembert-Gauss teoremi olarak da anılmaktadır.

Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.

<span class="mw-page-title-main">Rasyonel sayılar</span>

Rasyonel sayılar, iki tam sayı arasındaki oranı temsil eden, bir pay p ve sıfırdan farklı bir payda q olmak üzere, bir bölme işlemi veya kesir formunda ifade edilebilen sayıları tanımlar. Örneğin, rasyonel bir sayı olarak kabul edilir, bu kapsamda her tam sayı da rasyonel sayılar kategorisindedir. Rasyonel sayılar kümesi, çoğunlukla kalın harf biçimindeki Q veya karatahta vurgusu kullanılarak şeklinde ifade edilir.

<span class="mw-page-title-main">Logaritma</span> özel tanımlı bir fonksiyon türü

Matematikte logaritma, üstel işlevlerin tersi olan bir matematiksel fonksiyondur. Mesela, 1000'in 10 tabanına göre logaritması 3'tür çünkü 1000, 10'un 3. kuvvetidir,1000 = 10 × 10 × 10 = 103. Daha genel bir ifadeyle:

<span class="mw-page-title-main">Karekök</span>

Matematikte negatif olmayan bir gerçel sayısının temel karekök bulma işlemi şeklinde gösterilir ve karesi (bir sayının kendisiyle çarpılmasının sonucu) olan negatif olmayan bir gerçek sayıyı ifade eder.

<span class="mw-page-title-main">Halka</span>

Halka, matematikte cebirin temel yapılarından biridir ve soyut cebirde tam sayıların soyutlamasıdır. Bu yapıyı işleyen dala halka kuramı denir. Halkalar diğer bir temel yapı olan grupların üzerine inşa edilir. Her halka, aynı zamanda değişmeli bir gruptur, ama bir halkadan daha fazla özelliği sağlaması istenir. Örneğin halkada grup işlemine ek olarak ikinci bir işlem daha vardır. Halkalara örnek olarak tam sayılar, modülo n sayılar, polinomlar ya da karmaşık sayılar verilebilir.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Hiperbolik sayılar</span>

Gerçel sayılarda olmayan ve karesi 1 olan bir sayının kümeye katılmasıyla üretilen kümeye hiperbolik sayılar kümesi denir. Tıpkı karmaşık sayılarda olduğu gibi, hiperbolik sayılar şeklinde yazılabilen sayılardır, ancak karmaşık sayılardan tek farkı hiperbolik birim denilen sayının

<span class="mw-page-title-main">İkinci dereceden denklemler</span>

İkinci dereceden denklemler, derecesi 2 olan polinomların oluşturduğu denklemlerdir. Bu denklemlerin genel formu aşağıdaki gibidir

<span class="mw-page-title-main">François Viète</span> Fransız matematikçi (1540 – 1603)

François Viete Fransız matematikçi. Adıyla anılan Vieta formüllerini keşfetmiştir.

<span class="mw-page-title-main">Karmaşık düzlem</span>

Matematikte karmaşık düzlem, gerçel eksen ve ona dik olan sanal eksen tarafından oluşturulmuş, karmaşık sayıların geometrik bir gösterimidir. Karmaşık sayının gerçel kısmının x-ekseni boyuncaki yer değiştirmeyle, sanal kısmının ise y-eksenindeki yer değiştirmeyle temsil edildiği değiştirilmiş bir Kartezyen düzlem olarak düşünülebilir.

<span class="mw-page-title-main">Laurent serisi</span>

Matematikte karmaşık bir fonksiyonun Laurent serisi bu fonksiyonun negatif dereceli terimler de içeren kuvvet serisi temsilidir. Karmaşık fonksiyonların Taylor serileri açılımının mümkün olmadığı durumlarda bu fonksiyonları açıklamak için de kullanılabilir. Laurent serisi ilk defa 1843'te Pierre Alphonse Laurent tarafından yayınlanmış ve bu matematikçinin adını almıştır. Karl Weierstrass 1841'de bu seriyi bulmuş olabilir ancak o zamanda ilk yayınlayan olamamıştır.

i sayısı

Sanal birim ya da i sayısı, x2 = -1 eşitliğini sağlayan bir sayıdır. Reel sayılar kümesindeki hiçbir sayının karesi negatif olamayacağı için, bu ikinci dereceden denklemi sağlayan fakat reel sayılar kümesine ait olmayan böyle bir sayı, genellikle i notasyonu ile gösterilir. i sayısı, ℝ ile gösterilen reel sayılar kümesini ℂ ile gösterilen kompleks sayılar kümesine genişleten ve sabit olmayan her bir P(x) polinomu için en az bir kök sağlayan matematiksel bir kavramdır. "Hayali" terimi negatif kareye sahip gerçek sayı olmadığı için kullanılır.

<span class="mw-page-title-main">Kare (cebir)</span>

Cebirde bir sayının karesi o sayının kendisiyle çarpılması sonucu elde edilen sayıdır. Karesi alınan x sayısı x² biçiminde yazılır.

<span class="mw-page-title-main">Arithmetika</span>

Arithmetika veya Arithmetica İskenderiyeli Diophantus'un ilk yazıldığında 13 cilt olduğu tahmin edilen fakat günümüze sadece 6 cildinin ulaştığı en önemli eseridir. 19. yüzyıl Matematik tarihçisi Hankel'in tanımlamasına göre Arithmetica 5 farklı kategoride 130 problemi içerir. Hankel ayrıca bu problemleri çözümlenişlerine göre iki gruba ayırır;

tek çözümü olanlar (Determinate)
genel çözümü olanlar (Indeterminate).
<span class="mw-page-title-main">Kuadratik formül</span>

Temel cebirde, kuadratik formül, bir ikinci dereceden denklemin köklerini (çözümlerini) bulan bir formüldür. İkinci dereceden bir denklemi çözmek için ikinci dereceden formülü kullanmak yerine çarpanlara ayırma, tam kareye tamamlama, grafik çizme ve diğerleri gibi başka yollar da vardır.

<span class="mw-page-title-main">Çizilebilir sayı</span> Cetvel ve pergel kullanılarak, geometrik olarak oluşturulabilen gerçek sayı

Çizilebilir sayı terimi, geometri ve cebirde kullanılır ve bir reel sayı 'nin, belirli koşullar altında bir çizgi olarak çizilebilip çizilemeyeceğini ifade eder. Eğer birim uzunlukta herhangi çizgiyi kullanarak, sadece pergel ve cetvel yardımıyla ve belirli sayıda adımda, r uzunluğunda bir başka çizgi çizebilirse, bu durumda r sayısı çizilebilir bir sayıdır. Başka bir deyişle, r sayısını, sadece tam sayıları ve temel matematik işlemleri ile karekök alma işlemini kullanarak açık bir şekilde ifade edebiliyorsa, r sayısı çizilebilir kabul edilir.

<span class="mw-page-title-main">Karmaşık eşlenik</span>

Matematikte, bir karmaşık sayının karmaşık eşleniği, büyüklük olarak eşit ancak işaret olarak zıt bir sanal kısma ve eşit bir gerçel kısma sahip olan bir karmaşık sayıdır. Yani, ve gerçel sayılar ise, o zaman 'nin karmaşık eşleniği olur.