İçeriğe atla

Radyografi

Radyografi
Modern bir Röntgen makinasında dizin projeksiyonel radyografisi.
YapıKas ve iskelet sistemi
Alt bölümleriNükleer, onkolojik
Önemli hastalıklarKanser, kırıklar
Önemli testlerX-ray, bilgisayarlı tomografi, MRI, PET

Radyografi, bir nesnenin iç formunu görüntülemek için X ışınları, gama ışınları veya benzer radyasyon türleri[1] kullanan bir görüntüleme tekniğidir.

Görüntüyü oluşturmak için, bir X-ışını ışını veya başka bir elektromanyetik radyasyon formu bir X ışını jeneratörü tarafından üretilir ve nesneye doğru yansıtılır. Nesnenin yoğunluğuna ve yapısal bileşimine bağlı olarak, belirli miktarda X-ışını veya başka radyasyon nesne tarafından emilir. Nesneden geçen X ışınları, bir dedektör tarafından nesnenin arkasında yakalanır (fotoğraf filmi veya dijital dedektör). Bu teknik ile düz iki boyutlu görüntülerin üretilmesine projeksiyonel radyografi denir.

Bilgisayarlı tomografide (CT tarama) bir X-ışını kaynağı ve bununla ilişkili dedektörler, üretilen konik X-ışını boyunca hareket eden nesnenin etrafında döner. Nesne içindeki herhangi bir noktadan farklı zamanlarda birçok yönden farklı ışınlar geçirilir. Bu ışınların zayıflatılmasına ilişkin bilgiler, üç düzlemde (eksenel, koronal ve sagital) iki boyutlu görüntüler üretmek üzere hesaplanır ve bu iki boyutlu görüntüler daha sonra üç boyutlu bir görüntü üretmek için işlenirler.

Radyografinin uygulamaları arasında tıbbi (veya "tanısal") radyografi ve endüstriyel radyografi yer almaktadır. Benzer teknikler havaalanı güvenliğinde de kullanılır (vücut tarayıcıları genellikle geri saçma röntgeni kullanır).

Kaynakça

  1. ^ "Arşivlenmiş kopya". 14 Kasım 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 18 Mart 2019. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Işın izleme</span>

Işın izleme, gerçek dünyada ışığın ne şekilde hareket ettiğini göz önünde bulundurarak bir sahnenin görüntüsünü çizen bir grafik oluşturma yöntemidir. Ancak bu yöntemde işlemler gerçek yeryüzündeki yolun tersini izler. Gerçek dünyada ışık ışınları bir ışık kaynağından çıkar ve nesneleri aydınlatırlar. Işık, nesnelerden yansır ya da şeffaf nesnelerin içinden geçer. Yansıyan ışık gözümüze ya da kamera merceğine çarpar. Yansıyan ışık ışınlarının çoğu bir gözlemciye erişmediği için bir sahnedeki ışınları izlemek sonsuza dek sürebilir.

Elektromanyetik tayf veya elektromanyetik spektrum (EMS), evrenin herhangi bir yerinde fizik kurallarınca mümkün kılınan tüm elektromanyetik radyasyonu ve farklı ışınım türevlerinin dalga boyları veya frekanslarına göre bu tayftaki rölatif yerlerini ifade eden ölçüt. Herhangi bir cismin elektromanyetik tayfı veya spektrumu, o cisim tarafından çevresine yayılan karakteristik net elektromanyetik radyasyonu tabir eder.

<span class="mw-page-title-main">Radyoloji</span> Tıp dalı

Radyoloji, x ışınları ve diğer görüntüleme yöntemlerinin tıpta tanı ve tedavi amacıyla kullanılmasıdır. Tanı ve tedavi amacıyla kullanılan yöntemlerden bazıları; radyografi, ultrason, bilgisayarlı tomografi (BT), manyetik rezonans görüntüleme (MR), nükleer tıp yöntemleri, pozitron emisyon tomografi (PET), mamografi, floroskopi ve X ışını kullanan diğer bazı yöntemler olarak sıralanabilir. Bu yöntemlerin tanı amacıyla kullanımı, tıbbi görüntüleme ile elde edilen görüntülerden hastalıkların tespitinde yararlanılması şeklinde olurken, tedavi amacıyla kullanımı ise bazı radyolojik belirti ve cerrahi işlemlerin görüntüleme yöntemleri sayesinde daha az zararla yapılmasını sağlamalarıdır. Radyoloji iki ana başlığa ayrılır. Bunlar, "Diagnostik Radyoloji" ve "Radyoterapi" dir. Bazı radyolojik yöntemler aşağıda verilmiştir.

<span class="mw-page-title-main">Tomografi</span> Penetran dalga kullanarak kesit veya kesit alma yoluyla görüntüleme

Tomografi, radyolojik teşhis yöntemidir. 1915 yılında Fransız hekim Boccage tarafından icat edilmiştir. Fakat kullanıma geçilmesi 1930'ları bulur.

<span class="mw-page-title-main">Görüntü</span> görme duyusu ile ilgili olan; görüntü ve gözle izlenebilen her şeyin taşıdığı özellik

Görüntü veya imge, bir şeyin görsel temsilidir. Bir görüntü; çizim, resim ve fotoğraf gibi iki boyutlu (2B) bir sunum ya da oyma ve heykel gibi üç boyutlu (3B) bir nesne olabilir. Bir görüntü; bir yüzeye yansıtma, elektronik sinyallerin etkinleştirilmesi veya dijital ekranlar dahil olmak üzere diğer ortamlar aracılığıyla görüntülenebilir. İki boyutlu görüntüler hareketsiz veya hareketli olabilir. Durağan görüntüler, baskı veya fotokopi gibi mekanik yollarla çoğaltılabilir. Bazı durumlarda, üç boyutlu görüntüler de canlandırılabilir.

<span class="mw-page-title-main">X ışını</span> Elektromanyetik radyasyon

X ışınları veya Röntgen ışınları, 0,125 ile 125 keV enerji aralığında veya buna karşılık, dalgaboyu 10 ile 0,01 nm aralığında olan elektromanyetik dalgalar veya foton demetidir. 30 ile 30.000 PHz (1015 hertz) aralığındaki titreşim sayısı aralığına eşdeğerdir. X ışınları özellikle tıpta tanısal amaçlarla kullanılmaktadırlar. İyonlaştırıcı radyasyon sınıfına dahil olduklarından zararlı olabilirler. X ışınları 1895'te Wilhelm Conrad Röntgen tarafından Crookes tüpü (Hittorf veya Lenard tüpleri ile de) ile yaptığı deneyler sonucunda keşfedilmiştir. Klasik fizik sınırları içinde, X-ışınları aynı görünür ışık gibi bir elektromanyetik dalga olup, görünür ışıktan farkı düşük dalga boyu, dolayısıyla yüksek frekansları ve enerjileridir. Morötesi'nin ötesidir. X Işınlarının ötesi ise Gama ışınları'dır.

<span class="mw-page-title-main">Işınım enerjisi</span>

Işınım enerjisi, elektromıknatıssal dalgaların enerjisidir.

<span class="mw-page-title-main">Floroskopi</span>

Floroskopi, floroskop adı verilen cihaz yardımı ile hastanın gerçek zamanlı görüntülerinin alınması için kullanılan tıbbi görüntüleme tekniğidir.

<span class="mw-page-title-main">İyonlaştırıcı olmayan radyasyon</span> Düşük frekanslı radyasyon

İyonlaştırıcı olmayan radyasyon, bir atomdan veya molekülden bir elektronu tamamen koparabilmek için atomları veya molekülleri iyonlaştırabilecek yeterli enerji taşıyan kuantumlara sahip olmayan herhangi bir elektromanyetik radyasyon türüdür. Elektromanyetik radyasyon, maddenin içinden geçerken yüklü iyonlar üretmez. Yalnızca, bir elektronu daha yüksek enerji seviyesine çıkaran uyarım için yeterli enerjiye sahiptir. İyonlaştırıcı olmayan radyasyondan daha yüksek bir frekansa ve daha kısa dalga boyuna sahip olan iyonlaştırıcı radyasyon birçok kullanım alanına sahiptir, ancak sağlık için bir tehdit olabilir. İyonlaştırıcı radyasyona maruz kalmak yanıklara, radyasyon hastalıklarına, kansere ve genetik hastalıklara sebep olabilir. İyonlaştırıcı radyasyon kullanmak, iyonlaştırıcı olmayan radyasyon kullanılırken genelde gerekli olmayan dikkatli ve özenle alınmış radyolojik korunma önlemleri gerektirir.

X ışınları ya da y ışınları aracılığıyla metallerin ve alaşımların iç yapılarının incelenmesi yöntemidir.

<span class="mw-page-title-main">X ışını kristalografisi</span> bir kristalin atomik veya moleküler yapısını belirlemek için kullanılan, sıralanmış atomların gelen X-ışınları demetinin belirli yönlere kırılmasına neden olduğu teknik

X ışını kristalografisi bir kristalin atomik ve moleküler yapısını incelemek için kullanılan ve kristalleşmiş atomların bir X-ışını demetindeki ışınların kristale özel çeşitli yönlerde kırınımı olayına dayanan, bir yöntemdir. Kırınıma uğrayan bu demetlerin açılarını ve genliklerini ölçerek bir kristalografi uzmanı kristaldeki elektronların yoğunluğunun üç boyutlu bir görüntüsünü elde edebilir. Bu elektron yoğunluğundan kristaldeki atomların kimyasal bağları, kristal yapıdaki düzensizlikler ve bazı başka bilgilerle birlikte ortalama konumları tespit edilebilir.

<span class="mw-page-title-main">Gama ışını astronomisi</span>

Gama-ışını astronomisi, foton enerjileri 100 keV'den yüksek olan elektromanyetik radyasyonun en yüksek enerjili formu olan gama ışınlarının astronomik gözlemleridir. 100 keV altı radyasyonlar X-ışınları olarak sınıflandırılır ve X-ışını astronomisinin konusudur. Astronomik literatür genelde “gama-ışınlarını” sıfat olarak kullanıldığı zaman tire ile, isim olarak kullanıldğında “gamma ray” şeklinde tiresiz yazar.

<span class="mw-page-title-main">X ışını ikilisi</span>

X-ışını ikilileri, X-ışınlarında aydınlık olan ikili yıldızların bir sınıfıdır. X-ışınları bir maddenin verici denilen (genellikle normal bir yıldızın) bir bileşeninden bir beyaz cücenin, nötron yıldızının ya da kara deliğin sıkıştırılmasından oluşan kütle alıcı denilen diğer bileşenine düşmesiyle üretilir. Birbirlerini çeken madde X-ışınları gibi, geriye kalan kütlesinin birkaç ondalığı kadar, yerçekimi potansiyel enerjisini serbest bırakır. (Hidrojen füzyon, geriye kalan kütlenin sadece yüzde 0.7sini serbest bırakır.) Tipik sabit düşük kütleli bir X-ışını ikilisinden saniyede tahmini 1041 pozitron kaçmaktadır.

<span class="mw-page-title-main">X ışını astronomisi</span>

X-ışını astronomisi, astronomik nesnelerin X-ışınının gözlem ve algılama çalışmalarıyla uğraşan astronominin bir dalıdır. X-ışınları Dünya’nın atmosferi tarafından emildiği için x-ışınlarını tespit eden balon, sondaj roketleri ve uydular belirli bir yükseklikte bulunmalıdır. X-ışını astronomisi, Mauna Kea Gözlemevlerindeki gibi standart ışık emilimi olan teleskoplardan daha ilerisini gören uzay teleskopları ile ilgili bir uzay bilimidir.

Geometrik optik veya ışın optiği, ışık yayılmasını ışınlarla açıklar. Geometrik optikte ışın bir soyutlama ya da enstrumandır; ışığın belirli şartlarda yayıldığı yola yaklaşmada kullanışlıdır.

<span class="mw-page-title-main">X ışını teleskobu</span> Uzaydaki objeleri X ışınıyla inceleyen teleskop

X ışını teleskobu (XRT), uzaktaki objeleri X ışını spektrumunda gözlemlemek için dizayn edilen teleskoptur. X ışınlarına karşı opak olan Dünya atmosferinin üzerine ulaşmak için, X ışını teleskopları yüksek irtifa roketlerine, balonlara veya yapay uydulara montelenmelidir.

<span class="mw-page-title-main">X ışını mikroskobu</span>

Bir x ışını mikroskobu yumuşak X ışını şeritlerinde elektromanyetik radyasyonu kullanarak objelerin büyütülmüş görüntülerini üretir. X ışınları birçok objenin içinden geçebildiğinden onları gözlemlemek için özellikle hazırlamak gerekmez.

<span class="mw-page-title-main">Bilgisayar animasyonu</span>

Bilgisayar animasyonu, animasyonlu görüntüler üretmek için kullanılan işlemdir. Bilgisayar üretimli imgeleme (CGI) daha genel bir terim olarak hem statik hem de dinamik görüntüleri kapsarken, bilgisayar animasyonu yalnızca hareketli görüntüleri ifade eder. 2 boyutlu bilgisayar grafikleri hâlen üslup, düşük bant genişliği ve daha hızlı gerçek zamanlı uygulamalarda kullanılmakla birlikte, modern bilgisayar animasyonu genellikle 3 boyutlu bilgisayar grafikleri kullanır. Bazen animasyonun hedefi bilgisayarın kendisidir, ancak bazen de filmdir.

Kanser tanısı , günümüz sağlık sorunlarının en önemlilerinden biridir. Kanserde "erken tanı" ilkesi, tanı tekniklerinin oldukça iyi bir düzeye gelmesini sağlamıştır.

<span class="mw-page-title-main">Mikroskobi</span> çıplak gözle görülemeyen örnekleri ve nesneleri görüntülemek için mikroskop kullanılan teknik alan

Mikroskobi, çıplak gözle görülemeyen nesneleri ve alanları görüntülemek için mikroskop kullanmanın teknik adıdır. Üç iyi bilinen mikroskopi dalı vardır: optik, elektron ve taramalı prob mikroskobu. Bununla birlikte görece yeni ortaya çıkan X-ışını mikroskobu alanı da mevcuttur.