İçeriğe atla

RF enerji hasatlama

Yeni bir enerji kaynağı olan enerji hasatlama sistemler ortamda bulunan mevcut elektromanyetik enerjinin kullanılarak verimli doğru akıma dönüştürülmesini hedeflemektedir.[1] Ortamda mevcut olarak bulunan Radyo frekans (Radio Frequency; "RF") enerjisi, çeşitli elektronik devre ve cihaz uygulamalarında kullanılmak üzere enerji toplayıcı devrelerce alınır, doğrultularak doğru akım ve gerilim elde edilir. İhtiyaç olan enerjiyi, ortamdaki RF sinyal kaynaklarından temin etme işlemine RF Enerji Hasatlama (RF Energy Harvesting) adı verilmektedir.[2] RF enerji hasatlama devreleri, sensörler, düşük güçlü entegre devreleri ve kablosuz haberleşme modülleri gibi düşük güç tüketen projelerde sürekliliği olan bir enerji kaynağı oluşturmayı amaçlamaktadır. RF enerji toplama sistemi, temelde iki ana bileşenden oluşmaktadır. Bunlar; RF enerjiyi toplayan bir anten ve RF enerjisini doğrultarak doğru akıma (Direct Current; "DC") çeviren yüksek verimli bir doğrultucu devredir.

Şekil 1. RF Enerji Hasatlama Devresi

RF enerji toplama sistemi; anten, empedans uyumlandırma, doğrultucu devresi, DC filtre devresi ve yükten oluşmaktadır.[1] Anten, ortamdaki RF enerjiyi toplayan pasif elemandır. RF enerji toplama sistemlerinde çoğunlukla doğrultucu anten olarak adlandırılan Rectenna kullanılmaktadır. Rectennalarda genellikle mikroşerit yama antenler kullanılmaktadır. Uyumlama devresi, antenle doğrultucu arasında empedans uyumsuzluklarını gidererek maksimum güç iletiminin gerçekleşmesini sağlar. Uyumlama işlemi doğrultucunun temel frekanstaki giriş empedansı için yapılmaktadır.[3]

RF enerji hasatlama temel bileşenleri

  1. Mikroşerit Yama Anten
  2. Empedans Uyumlama Devresi
  3. Doğrultucu
  4. Maksimum Güç Transfer Devresi

Mikroşerit Yama Anten

Şekil 2. Inset beslemeli mikroşerit yama anten

İlk mikroşerit anten 1953 yılında ABD’de Deschamps tarafından tasarlanmıştır (Deschamps, 1953). 1955 yılında Gutton ve Baissinot, Fransa’da Ultra Yüksek Frekans bölgesinde kullanılabilen düz bir mikroşerit antenin patentini almıştır (Georges ve Henri, 1955). İlk pratik mikroşerit anten 1974 yılında Munson tarafından yapılmıştır (Munson, 1974). Temel olarak dikdörtgen ve dairesel mikroşerit antenlerin tasarımı 1975 yılında Howell tarafından yapılmıştır (Howel, 1975).[4] Mikroşerit yama anten temel olarak dielektrik zemin üzerininde ışıyan metal yama ile diğer tarafındaki toprak zemin düzleminden oluşmaktadır. Işıma yapan kısım dikdörtgen, şerit (dipol), dairesel, eliptik, üçgensel veya diğer konfigürasyonlar olabilmektedir. Mikroşerit antenler basit iki boyutlu fiziksel geometrisinden ötürü oldukça ucuza mal edilen ve tasarlanan pasif elemanlardır. Genellikle Ultra Yüksek Frekans (Ultra High Frequency; "UHF") ve daha yüksek frekanslarda çalıştırılmaktadır.[5] Metal yama genelde bakır, gümüş veya altın olan iletken malzemeden yapılabilmektedir.[6] Elektromanyetik sinyaller, bir yerden bir yere koaksiyel kablolar, dalga kılavuzları ve mikroserit iletim hatları ile taşınmaktadır. Rectennalarda taşıma mikroşerit iletim hat ile yapılmaktadır.[3]

Mikroşerit anten besleme çeşitleri

Mikroşerit besleme yöntemi

Mikroşerit besleme yönteminde besleme hattı ışıma yapan yüzey ile aynı düzlemde bulunmaktadır. Bu yöntemde yama, mikroşerit hattın uzantısı olduğu için üretimi basitleşmiş olmaktadır. Üretim kolaylığı nedeni ile en çok kullanılan yöntemlerinden biridir.[7]

Koaksiyel besleme yöntemi

Koaksiyel besleme, kablonun dışındaki topraklama kısmının antendeki toprak kısmına, kablonun içindeki gücü ileten kısmının da antenin yama yüzeyinin altına bağlanması ile sağlanmaktadır.[7]

Açıklık bağlantılı besleme yöntemi

Açıklık anten temassız mikroşerit anten türlerinden biridir. Açıklık bağlantılı beslemede, iki yalıtkan malzeme arasında toprak iletken yerleştirilip iletim hattı alttaki dielektrik malzemenin altında bulunmaktadır.[7]

Yakınlık bağlantılı besleme yöntemi

Yakınlık bağlantılı besleme de açıklık besleme gibi bir temasız besleme türüdür. Bu besleme türünde, iki yalıtkan tabakadan oluşmaktadır. Besleme hattı iki yalıtkan yüzeyin arasında konumlanarak açık devre yan hat ile sonlanmaktadır. Işıma yüzeyi en üstte, toprak yüzey ise en altta bulunmaktadır.[7]

Empedans uyumlama devresi

Şekil 3. Empedans uygunluğu

Empedans uygunluğu (impedance matching) elektronikte maksimum güç transferi için gereken kaynak ve yük empedansları arasındaki ilişkidir.[8] Enerji hasatlama devresinin en önemli şartlarından biri ortamdan alınan alınan gücü anten tarafından doğrultucu devreye aktarmaktır. Bu kısımda anten ile doğrultucu devre kısmında empedans uyumsuzlukları meydana gelebilir bunun en önemli nedeni diyotun doğrusal olmayan çalışma karakteristiğidir. Enerji hasatlama devreleri, kademelerin sayısına, doğrusal olmayan cihazın tipine ve reaktif bileşenin seçimine göre değişen belirli bir yük empedansı aralığına sahiptir. Bu nedenle, yük empedansı aralığının seçimini ve devre performansı üzerindeki etkisini doğrulamak önemlidir. RF hasat devresinin empedans uydurma aşaması, antenin doğrultucu devresine maksimum güç aktarımında kritik önem taşır.[1] Empedans uyumlama devreleri toplu elemanlar, saplamalar, çeyrek dalga dönüştürücüler ile tasarlanmaktadır.[3]

Doğrultucu

Doğrultucular, alternatif gerilimden (Alternating Current; AC), doğru gerilim elde etmeye yarayan devrelerdir. RF enerjileri genellikle düşük güç alanlarından olduğundan, bu bölgedeki sinyallerin tepe voltajı doğrultucu diyotun açılma geriliminden çok daha küçüktür.[9] Bu gereksinimi karşılamak için çok düşük voltaj gerilimi ve yüksek anahtarlama hızı gereklidir.[1] Doğrultucu olarak, literatürdeki en çok kullanılan enerji hasatlama devrelerinden olan Dickson ve Greinacher devreleri kullanılmaktadır. RF devrelerinde doğrultma amacıyla genellikle düşük iletkenlik direnci ve kavsak kapasitesi olan Schottky diyot kullanılmaktadır.[1]

Maksimum güç transfer devresi

Maksimum güç transferi teoremi Moritz Von Jacobi tarafından ortaya konulmuştur. Maksimum güç transferi teoremi; herhangi bir yüke kaynaktan hangi durumda maksimum gücün aktarılacağını belirtmektedir. Enerji hasatlama sistemlerinde gücün maksimum verimde aktarılması istenmektedir. Empedans uyumlama işlemi sayesinde yansımalar minimize edilip maksimum güç transferi sağlanmış olacaktır. RF enerji hasatlayıcı rectenna gibi düşük güçlerle çalışan devrelerde kayıplar minimize edilmelidir.[3]

Rectenna ve topolojileri

RF enerji hasatlama teknolojisinin önemli bir bileşeni, RF enerjisini DC gücüne dönüştürmek için antenler ve doğrultucu devrelerden oluşan “rectenna” dır. Gelen elektromanyetik dalga, doğrultucu anten tipi olan bir rectenna tarafından DC'ye dönüştürülmektedir. Rectenna'nın icadı1960'larda gerçekleşmiştir ve uzun mesafeli kablosuz güç iletimini mümkün kılmıştır. Rectenna, 1964'te icat edilmiş ve 1969'da ABD elektrik Mühendisi William C. Brown tarafından patenti alınmıştır.[10] Rectenna, İngilizce olarak rectifier ve antenna kelimelerinin birleştirilmesiyle oluşturulmuş doğrultucu anten anlamına gelmektedir.[3]

Tablo 1. Rectenna Topolojileri
TopolojiÖzellikleri
Yarım dalga doğrultucuYarım dalga doğrultucular, güç elektroniğinde sıkça kullanılan AC gerilimi DC'ye dönüştüren devrelerdir.[3] Doğru akım çıkışı daha sonra depolama kondansatörlerinde depolanmaktadır.
Gerilim kenetleyiciGerilim kenetleyici bir kondansatör ve bir ucu kısa devre yapılmış diyottan oluşan devredir. Rectennalarda çoğunlukla pozitif kenetleyiciler tercih edilmektedir.[3]
Gerilim katlayıcıKöprü tipi tam dalga doğrultucu devresi ile tek farkı, gerilim katlayıcıda iki diyotun iki kondansatörle yer değiştirmesidir. Böylece çıkış tepe değerinin yaklaşık iki katı kadar gerilim elde edilmektedir.[3]
RF ve DC birleştiriciRF birleştirici rectenna; anten, RF birleştirici ve doğrultucu elemandan oluşmaktadır. Her bir antenden alınan RF enerji güç birlşeitirici aracılığıyla tek bir doğrultucuya iletilmektedir.[3]

Kaynakça

  1. ^ a b c d e Belen, Mehmet Ali (23 Haziran 2018). "RF ENERJİ HASATLAMA SİSTEMLERİ İÇİN ÇİFT BANDLI GREİNACHER DOĞRULTUCU DEVRE TASARIMI". Mühendislik Bilimleri ve Tasarım Dergisi. 6 (2): 348-353. doi:10.21923/jesd.396269. ISSN 1308-6693. 19 Mayıs 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Mayıs 2021. 
  2. ^ Amer, Abdulrahman Ahmed Ghaleb; Sapuan, Syarfa Zahirah; Nasimuddin, Nasimuddin; Alphones, Arokiaswami; Zinal, Nabiah Binti (2020). "A Comprehensive Review of Metasurface Structures Suitable for RF Energy Harvesting". IEEE Access. 8: 76433-76452. doi:10.1109/ACCESS.2020.2989516. ISSN 2169-3536. 19 Mayıs 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Mayıs 2021. 
  3. ^ a b c d e f g h i "Gülmez Hüseyin Nuri, RF enerji hasatlayıcı Rectenna tasarımı / RF energy harvesting Rectenna design, İstanbul Teknik Üniversitesi". Yüksek Lisans Tezi. 2017. 19 Mayıs 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Mayıs 2021. 
  4. ^ Mutlu, Mustafa; Kurnaz, Çetin (7 Kasım 2020). "Mikrodalga Görüntüleme Sistemleri için Mikroşerit Anten Tasarımı". European Journal of Science and Technology. doi:10.31590/ejosat.819567. ISSN 2148-2683. 
  5. ^ "Akman Hatice, Hücresel otomata ve tabu arama algortiması ile mikroşerit yama anten tasarımı / Microstript patch antenna design with cellular automata and tabu search algorithm, Süleyman Demirel Üniversitesi". Yüksek Lisans Tezi. 2012. 19 Mayıs 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Mayıs 2021. 
  6. ^ Yıldırım A., Yağcı H.B., Paker S.,2.4 GHz’de Yüksek Kazançlı Mikroşerit Yama Anten Tasarım ve Gerçekleştirimi, KSU Mühendislik Bilimleri Dergisi, 15(2),2012
  7. ^ a b c d Sözen Emre, 5GHz mikroşerit anten tasarımı ve besleme çeşitlerinin karşılaştırılması, Yüksek Lisans Tezi, Haliç Üniversitesi, İstanbul, 2019.
  8. ^ "Empedans uygunluğu. (2020, 24 Nisan) Invikipedi, Özgür Ansiklopedi.Mayıs 19, 2021'de alınmış". 22 Kasım 2009 tarihinde kaynağından arşivlendi. 
  9. ^ Yan, H., Montero, J. G. M., Akhnoukh, A., de Vreede, L. C. N., Burghart, J. N., 2005. An integration scheme for RF power harvesting. 8th Annu. Workshop Semiconductor Advances Future Electron. Sensors, Veldhoven, the Netherlands.
  10. ^ Kaltenbach, M. (6 Şubat 1976). "[Conservative therapy of coronary disease]". Deutsche Medizinische Wochenschrift (1946). 101 (6): 208-213. doi:10.1055/s-0028-1104063. ISSN 0012-0472. PMID 2455. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektronik devre elemanları</span> elektronik devreyi meydana getiren ögeler

Elektronik devre elemanları, elektrik devresinin çalışabilmesi için kullanılan parçalara denir. Aktif ve pasif devre elemanları olarak iki gruba ayrılır.

<span class="mw-page-title-main">Kondansatör</span> Ani yük boşalması amacıyla kullanılan devre elemanı

Kondansatör ya da sığaç veya yoğunlaç, elektronların kutuplanıp elektriksel yükü elektrik alanın içerisinde depolayabilme özelliklerinden faydalanılarak bir yalıtkan malzemenin iki metal tabaka arasına yerleştirilmesiyle oluşturulan temel elektrik ve elektronik devre elemanı. Piyasada kapasite, kapasitör, sığaç gibi isimlerle anılan kondansatörler, 18. yüzyılda icat edilip geliştirilmeye başlanmış ve günümüzde teknolojinin ilerlemesinde büyük önemi olan elektrik-elektronik dallarının en vazgeçilmez unsurlarından biri olmuştur. Elektrik yükü depolama, reaktif güç kontrolü, bilgi kaybı engelleme, AC/DC arasında dönüşüm yapmada kullanılır ve tüm entegre elektronik devrelerin vazgeçilmez elemanıdır. Kondansatörlerin karakteristikleri olarak;

<span class="mw-page-title-main">Diyot</span> Yalnızca bir yönde akım geçiren devre elemanı.

Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki dirençleri ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır.

Doğrultucu veya redresör, bir ya da daha fazla yarı iletken elemandan oluşan alternatif akımı doğru akıma çevirmek için kullanılan elektriksel bir devredir. AC' yi doğrultmak için tek bir diyot kullanıldığı zaman doğrultucu AC' yi DC' ye çeviren bir diyod olarak tanımlanır.

<span class="mw-page-title-main">Anten (elektronik)</span> elektrik gücünü radyo dalgaları ile çeviren elektronik aygıt

Elektronikte antenler, boşluktaki elektromanyetik dalgaları toplayarak bu dalgaların iletim hatları içerisinde yayılmasını sağlayan veya iletim hatlarından gelen sinyalleri boşluğa dalga olarak yayan cihazlardır. Antenlerde enerjinin iletimi ve alınması anteni oluşturan metal iletkenlerin uygulanan elektrik akımı ile yüklenmesi ile gerçekleşir. Alıcı antene eşlenen güç sinyalin arttırılması için bir amplifikatöre iletilebilir. Antenler radyo, telsiz ve benzeri kablosuz iletişim cihazlarının temel elemanlarındandır.

MBRAI Hareketli ve Taşınabilir DVB-T/H Aygıtları İçin Radyo Erişim Arayüzü Tanımlamaları, yeni gelişmekte olan DVB-T ve DVB-H standardları için endüstrinin ve tüketici pazarının ihtiyaç duyduğu Radyo Frekans başarım ölçütlerini tanımlar. Tanımlama çalışmaları Kasım 2002 yılından beri EICTA tarafından yürütülmektedir.

<span class="mw-page-title-main">Alternatif akım</span>

Alternatif akım, genliği ve yönü periyodik olarak değişen elektriksel akımdır. En çok kullanılan dalga türü sinüs dalgasıdır. Farklı uygulamalarda üçgen ve kare gibi değişik dalga biçimleri de kullanılmaktadır. Bütün dalgalar birbirlerine elektronik devreler aracılığı ile çevrilebilir. Devrede kondansatör, diyotlar, röleler ile bu çevrim yapılabilir.

<span class="mw-page-title-main">Analog televizyon vericisi</span>

Televizyon vericileri televizyon yayını yapan, yani stüdyolarda oluşturulan haber ve programların konutlardaki alıcılara ulaştırılmasını sağlayan en önemli teknik araçlardır. kablo ve uydu gibi alternatif yayın araçlarıyla karıştırmamak için TV vericileri bazen "yer vericileri" olarak da isimlendirilir.

Empedans uygunluğu elektronikte maksimum güç transferi için gereken kaynak ve yük empedansları arsındaki ilişkidir. Fizikte hemen hemen daima üretilen gücün yüke en yüksek verim ile aktarılması yani maksimum güç transferi yapılması hedeflenir. Elektronik devrelerde maksimum güç transferi için, yük empedansı kaynağa göre ayarlanır.

Kısa devre bir elektrik veya elektronik devrede bir hata sonucu direncin aşırı düşük olması olayıdır. Bu durumda devre aşırı akım çeker ve şayet koruma devresi yoksa, kaynağın arızalanması, aşırı sıcaklık ve yangın tehlikesi oluşur.

<span class="mw-page-title-main">Koaksiyel kablo</span> televizyon ve uydu iletişim sistemlerinde kullanılan kablo türü

Koaksiyel kablo radyo frekansta kullanılan bir kablo türüdür. Bu kablonun kesit alanı iç içe dört maddeden meydana gelir. En içte canlı hat, yani sinyali taşıyan hat vardır. Bu uç dielektrik sabiti yüksek bir yalıtkan ile çevrelenmiştir. Yalıtkanın çevresinde iletkenlerden oluşan bir örgü vardır. Bu örgü topraklanmıştır. En dışta ise koruyucu kılıf yer alır. Bu yapı koaksiyel kabloların kendi kalınlığındaki diğer kablolara göre daha elastiki olmalarını sağlar.

HF, 2 MHz - 29.99 MHz frekans aralığında, uzun mesafe ses haberleşmelerini sağlayan haberleşme sistemidir

<span class="mw-page-title-main">İletim hattı</span>

İletim hattı, elektronik ve haberleşme mühendisliğinde, akımın dalga karakteristiğinin hesaba katılmasını gerektirecek kadar yüksek frekanslarda, radyo frekansı, alternatif akımın iletimi için tasarlanmış özel kablo. İletim hatları radyo vericisi, alıcısı ve bunların anten bağlantıları, kablolu televizyon yayınlarının dağıtımı ve bilgisayar ağları gibi yerlerde kullanılır.

Bir nanoanten, ışığı elektrik gücüne dönüştürmek için geliştirilmiş deneysel bir teknoloji olan nanoskopik rektifiye bir antendir. Yani nanoantenler ile ilgili kavram kablosuz güç iletiminde kullanılan bir cihaz olan rektifiye antenlere dayanır. Bir rektifiye anten radyo dalgalarını doğru akıma dönüştüren özelleştirilmiş bir radyo antenidir. Işık, radyo dalgalarına benzeyen elektromanyetik dalgalardan oluşur fakat; daha küçük dalga boylarına sahiptir. Bir nanoanten, nanoteknoloji kullanılarak üretilmiş, ışık için anten görevi gören ve ışığı elektrik akımına dönüştüren, hemen hemen bir ışık dalgası boyutunda olan çok küçük rektifiye antendir. Nanoanten dizilerinin geleneksel güneş pillerine göre daha verimli bir şekilde güneş ışığını elektrik gücüne dönüştüren bir araç olmaları beklenir. Bu fikir ilk olarak Robert L. Bailey tarafından 1972 yılında ortaya atılmıştır. 2012 itibarıyla enerji dönüşümünün mümkün olduğunu gösteren sadece birkaç adet nanoanten cihazı üretilebilmiştir. Nanoantenlerin bir gün fotovoltaik piller kadar etkin maliyetli olabilecekleri halen bilinememektedir. Bir nanoanten, nanoantenin boyutuna uygun spesifik dalga boylarını absorbe etmek için tasarlanmış bir elektromanyetik kollektördür. Bu günlerde Idaho Ulusal Laboratuvarları 3-15 μm uzunluğundaki dalga boylarını absorbe etmek üzere tasarlanmış bir nanoanten tasarlamaktadır. Bu dalga uzunluğu 0.08 - 0.4 eV foton enerjisine karşılık gelir. Anten teorisine göre, bir nanoanten, nanoantenin boyutu belirli bir dalga boyu için optimize edilmiş olmak koşuluyla, herhangi bir dalgaboyundaki ışığı verimli bir şekilde absorbe edebilir. İdeal olarak nanoantenler 0.4 - 1.6 μm arasındaki dalga boylarını absorbe etmek için kullanılmalıdırlar. Çünkü bu aralıktaki dalga boyları, uzak- kızılötesinden daha yüksek enerjiye sahiptirler ve solar radyasyon spektrumunun yaklaşık olarak %85'ini oluştururlar.

<span class="mw-page-title-main">Mikroşerit</span> Mikrodalga-frekansı sinyalleri iletmek için kullanılan bir çeşit elektriksel iletim hattı

Mikroşerit, baskılı devre kartı teknolojisi kullanılarak üretilebilen ve mikrodalga-frekansı sinyalleri iletmek için kullanılan bir çeşit elektriksel iletim hattıdır. Substrat olarak bilinen bir dielektrik katman kullanılarak toprak düzleminden ayrılmış bir iletken şeritten oluşmaktadır. Anten, eşleyici, filtre ve güç bölücü gibi birçok mikrodalga devre elemanı mikroşeritler kullanılarak yapılabilir. Mikroşeritler standart dalga kılavuzlarına göre daha ucuz, hafif ve kompakttır. Mikroşeritler ITT laboratuvarları tarafından "stripine" teknolojisine alternatif olarak geliştirilmiştir; yeni teknoloji ile ilgili ilk bulgular ilk kez 1952 yılında yayınlanmıştır. Mikroşeritler mikrodalga gömülü devrelerinde sıklıkla kullanılmaktadır.

Kablosuz enerji ya da kablosuz enerji transferi, insan yapımı iletken olmadan güç kaynağından elektriksel alana elektrik transferidir. Kablosuz transfer kabloların bağlantısının uygunsuz, tehlikeli ve imkânsız olduğu durumlarda kullanışlıdır. Kablosuz enerji transferindeki problem kablosuz telekomünikasyondan örneğin radyo gibi farklıdır. İkinci olarak, alınan enerjinin yayılması sadece sinyal çok az olduğunda kritik olur. Kablosuz enerji için yeterlilik çok önemli bir parametredir. Enerjinin büyük çoğunluğu üretilen kaynak tarafından alıcı ya da alıcılara sistemi ekonomik yapmak için ulaşmasında gönderildi. En yaygın kablosuz elektrik transfer şekli manyetik resonator tarafından direkt indüksiyon olarak kullanılmasıdır. Mikrodalgalar ya da lazer formunda elektromanyetik radyasyon ve doğal medya sayesinde elektriksel iletkenlik düşündüğümüz metotlardır.

<span class="mw-page-title-main">Yalıtkan (elektrik)</span>

Elektriksel yalıtkan, elektrik yükünün serbestçe akamadığı maddelerdir. Bu yüzden elektrik alanının etkisi altında kaldıklarında, elektrik akımını iletmeleri zordur. Mükemmel yalıtkanlar bulunmamaktadır. Ancak, cam kâğıt ve polietilen tabanlı vesaire gibi yüksek özdirence sahip bazı maddeler çok iyi elektrik yalıtkanlarıdır. Daha düşük özdirençleri olan maddeler hala elektrik kablolarında kullanılmak için yeterlidir. Kauçuk benzeri polimerler ve birçok plastik bu gruba dâhildir. Bu tür malzemeler düşükten orta dereceli gerilimleri güvenli bir şekilde yalıtılmasına hizmet eder.

<span class="mw-page-title-main">Amplifikatör</span>

Amplifikatör veya yükselteç, elektronik sinyalleri artırmak için kullanılan elektronik cihazlardır. Amplifikatörler bu işlemi bir güç sağlayacısından alıp bu çıkış sinyallerinin şeklini eşleştirerek yaparlar. Yani, bir amplifikatör güç sağlayıcısından aldığı sinyalleri düzenler.

<span class="mw-page-title-main">Döngü anten</span>

Döngü veya çerçeve anten, uçları dengeli bir iletim hattına bağlı olan döngü şeklinde bir kablo, boru sistemi veya diğer elektriksel iletkenden oluşan bir radyo antenidir. Fiziksel tanımı içerisinde iki belirgin anten tasarımı vardır: boyutu bir dalga boyundan çok daha küçük olan küçük döngü anteni veya çevresi yaklaşık olarak dalga boyuna eşit olan salınım yapan döngü anteni.

<span class="mw-page-title-main">Çift hat</span>

Çift hat telekomünikasyonda kullanılan bir yüksek frekans kablosudur. Birbirlerinden sabit uzaklıkta iki bakır iletken bir polietilen kılıf içerisindedir. Çift iletken olduğu için, kablo dengelidir. Kablo empedansını ise iki iletken arasındaki uzaklık belirler. En çok kullanılan 300 ohmluk kablolarda iletkenler arası uzaklik 7.5 mm. dir. Bu tip kablolar kıvrık dipol antenler için özellikle uygundur. Çünkü kıvrık dipollerin empedansları 300 ohm dolaylarındadır. Ayrıca dengeli olduklari için bağlantıda bir balun gerekmez.