İçeriğe atla

RAFT

RAFT (İngilizce: Reversible Addition-Fragmentation chain Transfer, Türkçe: Tersinir eklenme-parçalanma zincir transferi), 1998 yılında Avustralya'nın bilimsel ve endüstriyel araştırma kurumu CSIRO tarafından keşfedilen bir polimerleşme tepkime tekniğidir.

RAFT zincir transferi ajanının genel şekli

RAFT tekniği, polimerleşmenin en büyük problemlerinden biri olan polimer kütlesinin kontrol edilememesinin büyük oranda üstesinden gelme imakanını sağlamıştır. Atom transfer radikal polimerizasyonu (ATRP) ve nitroksit aracılıklı polimerizasyon (NMP) gibi diğer polimerleşme tekniklerine kıyasla daha geniş bir monomer yelpazesinde başarılı bir şekilde uygulanılabilmektedir. Bu tekniğin en büyük dezavantajlarından biri, oluşan polimer ürünlerinin genellikle pembe veya bu rengin çeşitli tonları olması. Bunun sebebi ise kullanılan zincir transferi ajanlarının dithioester, thiocabamate ve xantate gibi türevlerden oluşması.[1]

RAFT tepkime tekniğinin ana etmenleri

  • Başlatıcı
  • Monomer
  • Zincir transferi ajanı
  • Çözücü
  • Sıcaklık

RAFT tepkime tekniğinin mekanizması

RAFT tepkime tekniği ana olarak dört aşamadan oluşur. Başlama, tersinir eklenme parçalanma, tekrar başlama ve ana denge tepkimesi.

Başlama: Bu aşamada bir radikal başlatıcısı (örneğin AIBN) monomerle tepkimeye girerek büyümekte olan bir polimer zinciri oluşturur.

Tersinir eklenme-parçalanma: Büyümekte olan polimer zinciri RAFT ajanı ditiyoester ile tepkime verir. RAFT ajanı, eklemli RAFT ajanı hâline dönüşür. Bu ara radikalik ürün sistemde denge hâlindedir. Zira büyümekte olan zincirin eklenmesi ile kendinden bir parça kopması mümkün olduğu gibi tepkimeye girenler yönünde parçalanarak eklenmiş olan radikalik polimer zincirinin, büyümeye devam etmesini sağlayabilir.

Tekrar başlama: Ayrılan radikalli grup monomerlerle tepkimeye girerek yeni bir büyümekte olan polimer zinciri oluşturur.

Ana denge tepkimesi: Aktif olarak büyümekte olan polimer zincirleri ile RAFT ajanı arasında denge kurularak, polimer kütlesinin kontrolü sağlanmış olur.

Kaynakça

  1. ^ Hand Book of RAFT Polymerization

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Protein</span> polipeptitlerin işlevsellik kazanması sonucu oluşan canlıların temel yapı birimi

Proteinler, bir veya daha fazla uzun amino asit artık zincirini içeren büyük biyomoleküller ve makromolekül'lerdir. Proteinler organizmalar içinde, hücrelere yapı ve organizmalar sağlayarak ve molekülleri bir konumdan diğerine taşıyarak metabolik reaksiyonları katalizleme, DNA kopyalama, uyaranlara yanıt verme dahil olmak üzere çok çeşitli işlevler gerçekleştirir. Proteinler, genlerinin nükleotit dizisi tarafından dikte edilen ve genellikle faaliyetini belirleyen özel 3D yapıya protein katlanmasıyla sonuçlanan amino asit dizilimlerinde birbirlerinden farklıdır.

<span class="mw-page-title-main">Enerji</span> bir sistemin iş yapabilme yeteneğinin ölçüsü

Fizikte enerji, bir cisime veya fiziksel bir sisteme aktarılan, işin performansında ve ısı ve ışık biçiminde tanınabilen niceliksel özelliktir. Enerji korunan bir miktardır; Enerjinin korunumu yasası, enerjinin istenen biçime dönüştürülebileceğini ancak yaratılamayacağını veya yok edilemeyeceğini belirtir. Uluslararası Birimler Sisteminde (SI) enerjinin ölçü birimi joule'dür (J).

<span class="mw-page-title-main">Nükleer füzyon</span> Hafif çekirdeklerin daha ağır bir çekirdek oluşturmak için birleşmesi

Nükleer füzyon, nükleer kaynaşma ya da kısaca füzyon; iki hafif elementin nükleer reaksiyonlar sonucu birleşerek daha ağır bir element oluşturmasıdır. Çekirdek tepkimesi olarak da bilinen bu tepkimenin sonucunda çok büyük miktarda enerji açığa çıkar.

<span class="mw-page-title-main">Aldehit</span>

Aldehitler, yapılarında karbonil grubuna bağlı bir hidrojenin olduğu organik bileşiklerdir. Düşük karbonlu aldehitler polar moleküller olup düşük ve yoğun fazlarda hidrojen bağı içermezler. Aynı karbon sayılı ketonlara göre kaynama noktası aldehitlerde daha yüksektir.

<span class="mw-page-title-main">Alken</span>

Alkenler yapılarında en az bir tane karbon-karbon (C=C) çift bağı içeren organik bileşiklerdir. Alkenlerin yapısında karbon-karbon çift bağı bulunduğundan ve bu karbonların yapabileceği en fazla hidrojenle bağ yapmamış olduğundan alkenler doymamış bileşikler kategorisine girerler. Alkenlerin yapısında sadece bir karbon-karbon çift bağının bulunması durumunda homolog seriler oluşturur. Bu homolog serilerin genel formülü CnH2n şeklindedir. Burada n-in en az 2 olma şartı vardır. Aşağıda en basit alken olan eten, yaygın ismiyle etilenin, çeşitli modellemelerle çizilmiş şekillerinin yanı sıra alkenlerin çeşitli şekillerdeki yazılış şekilleri de bulunmaktadır.

<span class="mw-page-title-main">Enzim</span> biyomoleküller

Enzimler, kataliz yapan biyomoleküllerdir. Neredeyse tüm enzimler protein yapılıdır. Enzim tepkimelerinde, bu sürece giren moleküllere substrat denir ve enzim bunları farklı moleküllere, ürünlere dönüştürür. Bir canlı hücredeki tepkimelerin neredeyse tamamı yeterince hızlı olabilmek için enzimlere gerek duyar. Enzimler substratları için son derece seçici oldukları için ve pek çok olası tepkimeden sadece birkaçını hızlandırdıklarından dolayı, bir hücredeki enzimlerin kümesi o hücrede hangi metabolik yolakların bulunduğunu belirler.

<span class="mw-page-title-main">Azot monoksit</span>

Azot monoksit, kimyasal formülü NO olan bir bileşiktir. Bu gaz, -insanlar da dahil olmak üzere- memelilerin vücutlarında önemli bir sinyal molekülü olmasının yanı sıra kimyasal endüstride de önemli bir ara üründür. Ayrıca NO, araba motorları ve elektrik santralleri tarafından üretilerek hava kirliliğine neden olur.

Yıldız evrimi bir yıldızın yaşamı boyunca maruz kaldığı radikal değişikliklerin bir sürecidir. Yıldız'ın kütlesine bağlı olarak bu yaşam süresi, birkaç milyon yıldan, trilyonlarca yıla ulaşabilir, evrenin yaşı göz önüne alındığında bu çok fazladır.

<span class="mw-page-title-main">Radikal (kimya)</span>

Kimyada radikaller eşleşmemiş elektronu olan atom, molekül veya iyonlardır. Bu eşleşmemiş elektronlar genelde son derece reaktiftir. Radikaller, yanma, atmosfer kimyası, polimerleşme, plazma kimyası, biyokimya ve pek çok başka kimyasal süreçte önemli rol oynar. Örneğin, insan fizyolojisinde, süperoksit ve azot oksit, damar tonusu gibi pek çok biyolojik süreci düzenler. Radikal ve serbest radikal terimleri genelde eşanlamlı kullanılmakla beraber, bir radikal bir çözelti kafesi içinde hapsolmuş veya başka bir moleküle bağlanmış durumda olabilir. 1900'de Michigan Üniversitesi'nde Moses Gomberg tarafından betimlenen trifenilmetil radikali, ilk tespit edilmiş organik serbest radikal olmuştur.

<span class="mw-page-title-main">Nükleer silah yapımı</span>

Nükleer silah yapımı, nükleer bir silahın fiziksel paketlerinin patlaması için yapılan fiziksel, kimyasal ve teknik düzenlemelerdir. Dört temel tasarım türü vardır. Sonuncusu hariç hepsinde, yerleştirilmiş cihazlardaki patlayıcı enerji füzyon ile değil, nükleer fisyon ile elde edilir.

Kimyasal reaktiflik, bir reaksiyonun meydana gelme eğilimiyle ilişkilidir. Kimyasal tepkimelerin gerçekleşmesini belirleyen faktörler termodinamik düzeyinde incelenir. Termodinamik olarak bir reaksiyon eğer tepkimenin ürünleri reaktanlara kıyasla daha düşük serbest enerji düzeyinde ise gerçekleşir. Diğer taraftan Reaktiflik ise genel olarak bir maddenin kimyasal değişikliklere ya da kimyasal tepkimelere girme eğilimine denir. Elementlerin atomik yapısı ve elektronlarının dizilişi elementlerin ve oluşturdukları moleküllerin reaktifliğinde önemli rol oynar. Soygazların örneğin kimyasal olarak çok az reaktiflik gösterdiği belirtilir. Dolayısıyla kimyasal bileşik oluşturmaları zordur. Bu durum soygazların tam dolu olan en dış elektron kabuğundan dolayıdır.
Kimyasal denge, asit ve baz kimyası, elektron aktarımı tepkimesi ve entropi gibi konular kimyasal reaktifliğin temel kavramlarıdır.

Organik reaksiyonlar, organik maddelerin tepkimelerine verilen genel addır.

Polimer fiziği, sırasıyla polimerleri, onların dalgalanmalarını, mekanik özelliklerini ve ek olarak polimer ve monomerlerin bozulma ve polimerleşme gibi kinetik reaksiyonlarını inceleyen fizik dalıdır. Yoğun madde fiziği perspektifine odaklanmış olsa da polimer fiziği aslen istatistiki fiziğin bir dalıdır. Polimer fiziği ve polimer kimyası da polimerlerin uygulanabilir bölümlerini inceleyen polimer biliminde birbirleriyle alakalıdır. Polimerler büyük moleküller oldukları için deterministik metot kullanarak çözümü oldukça karmaşıktır. Fakat istatistiki yaklaşımlar sıklıkla geçerli sonuçlar verebilir çünkü büyük polimerler sonsuz sayıdaki monomerlerin termodinamik limitiyle verimli bir şekilde tarif edilebilir Termal dalgalanmalar sıvı çözeltinin içindeki polimerlerin şekline sürekli etki eder ve bu etkiyi modellemek istatistiki mekanik ve termodinamiğin yardımını gerektirir. Doğal olarak, sıcaklık faz değişimleri erime ve başka birçok şeye neden olarak çözelti içindeki polimerlerin fiziksel davranışlarına güçlü bir şekilde etki eder Polimer fiziği için istatistiksel yaklaşım bir polimerle Brown Devinimi ya da tesadüfi hareket, öz-kaçınmalı hareket tiplerinden birinin benzerliği üzerine kuruludur. En basit polimer zincir modeli tesadüfi harekete denk gelen ideal zincir şeklinde sunulmaktadır. Polimerleri karakterize etmek için deneysel yaklaşımlar ayrıca yaygındır. Büyüklük dışlanımlı kromatografi, viskometri, dinamik ışık saçılımı ve polimerleşme reaksiyonlarını otomatik sürekli çevrimiçi gözetleme metotlarını kullanan polimer karaktarizasyon metotları polimerlerin kimyasal fiziksel ve maddesel özelliklerinin tayini için kullanılabilir. Bu deneysel metotlar ayrıca polimerlerin matematiksel olarak modellenmesine yardımcı olur daha fazlasıyla polimerlerin özelliklerinin daha iyi anlaşılmasını sağlar.

Reaksiyon kinetiği olarak da bilinen kimyasal kinetik, kimyasal reaksiyonların hızlarını ve mekanizmalarını araştırmakla ilgilenen bir fiziksel kimya dalıdır. Bir sürecin gerçekleştiği yön ile ilgilenen ancak gerçekleşme hızları hakkında bir bilgi vermeyen termodinamik ile karıştırılmamalıdır. Kimyasal kinetik, deneysel koşulların kimyasal reaksiyonların hızı üzerine etkilerini, reaksiyon mekanizmaları ile geçiş hâllerinin verim bilgilerini ve kimyasal reaksiyonların karakteristiklerini tanımlayan matematiksel modellerin çıkarılmasını kapsayan bir bilim alanıdır.

<span class="mw-page-title-main">Ara yüzey polimerizasyonu</span>

Arayüzey polimerizasyonu basamaklı polimerizasyonun bir türüdür. Arayüzey polimerizasyonunda polimerizasyon birbirine karışmayan iki faz arasında gerçekleşir ve sonucunda bu iki faz arasında polimer oluşur. Çeşitli arayüzey polimerizasyonu tipi vardır ve farklı tipler farklı polimer topolojilerine sebep olabilir. İnce filmler, nanokapsüller, ve nanolifler bu topolojilerden birkaçıdır.

Emülsiyon polimerizasyonu genellikle su, monomer ve yüzey aktif madde içeren bir emülsiyon ile başlayan bir tür radikal polimerizasyondur. En yaygın emülsiyon polimerizasyonu tipi, su içinde yağ emülsiyonu olup, bu polimerizasyon tipinde monomer damlacıkları, su fazı içinde olan yüzey aktif cisimleri ile emülsiyon haline getirilir. Bazı polivinil alkoller veya hidroksietil selüloz gibi suda çözünen polimerler, emülsiyonlaştırıcı/stabilizatör olarak kullanılabilir. "Emülsiyon polimerizasyonu" adı, tarihsel bir yanlış anlamadan kaynaklanan, hatalı bir adlandırmadır. Polimerizasyon aslında emülsiyon damlacıklarında meydana gelmez, işlemin ilk birkaç dakikasında kendiliğinden oluşan lateks/kolloid parçacıklarında gerçekleşir. Bu lateks partikülleri tipik olarak 100 nm büyüklüğünde olup birçok polimer zincirinden oluşurlar. Her partikül yüzey aktif madde ('sabun') ile çevrili olduğu için partiküllerin birbiriyle pıhtılaşması önlenir; yüzey aktif maddenin üzerindeki elektrik yükü diğer partikülleri elektrostatik olarak iter. Sabun yerine suda çözünür polimerler stabilizatör olarak kullanıldığında, parçacıklar arasındaki itme, suda çözünür polimerlerin parçacığın üzerinde diğer parçacıkları iten bir 'tüylü tabaka' oluşturması ile olur. Bunun nedeni parçacıkları bir araya getirmenin tüylü tabakadaki polimer zincirlerinin sıkıştırılmasını gerektirmesidir.

<span class="mw-page-title-main">Basamaklı polimerizasyon</span>

Basamaklı polimerizasyon, iki veya daha çok fonksiyonel gruplu monomerlerin ilk önce dimerleri, daha sonra trimerleri, daha sonra uzun oligomerleri ve sonunda uzun zincirli polimerleri oluşturmak üzere reaksiyona girdiği bir polimerizasyon mekanizmasıdır. Birçok doğal ve sentetik polimer basamaklı polimerizasyon sonucunda oluşur. Örneğin: poliesterler, poliamidler, poliüretanlar ve benzeri polimerler basamaklı polimerizasyon ile sentezlenirler. Polimerizasyon mekanizmasının doğası gereği, yüksek moleküler ağırlık elde etmek için yüksek kapsamlı ("extent") reaksiyon gereklidir. Kademeli bir polimerizasyon mekanizması, insan zinciri oluşturmak birbirlerinin ellerini tutan insanların oluşturduğu bir "insan zincirine" benzetilebilir - her insanın iki eli - reaktif yerleri - vardır. İnsanların aksine bir monomer üzerinde ikiden fazla kola -reaktif bölgeye- sahip olma olasılığı vardır: Bu durumda dallı polimerlerin üretimi gerçekleşir.

Serbest radikal polimerizasyonu, serbest radikal yapı bloklarının art arda eklenmesiyle bir polimerin oluştuğu bir polimerizasyon yöntemidir. Serbest radikaller, genellikle ayrı başlatıcı molekülleri içeren bir dizi farklı mekanizma ile oluşturulabilir. Oluşumunu takiben, başlatıcı serbest radikal monomer birimleri ekler ve böylece polimer zincirini büyütür.

Polimer kimyası, polimerlerin ve makromoleküllerin kimyasal sentezine, yapısına ve kimyasal ve fiziksel özelliklerine odaklanan bir kimya alt disiplinidir. Polimer kimyasında kullanılan ilkeler ve yöntemler, organik kimya, analitik kimya ve fiziksel kimya gibi çok çeşitli diğer kimya alt disiplinleri aracılığıyla da uygulanabilir. Pek çok malzeme tamamen inorganik metaller ve seramiklerden DNA ve diğer biyolojik moleküllere kadar polimerik yapılara sahiptir, ancak polimer kimyası tipik olarak sentetik, organik bileşimler bağlamında anılır. Sentetik polimerler, genellikle plastik ve kauçuk olarak adlandırılan, günlük kullanımdaki ticari malzemeler ve ürünlerde her yerde bulunur ve kompozit malzemelerin ana bileşenleridir. Polimer kimyası, her ikisi de polimer fiziği ve polimer mühendisliğini kapsayacak şekilde tanımlanabilen daha geniş polimer bilimi veya hatta nanoteknoloji alanlarına da dahil edilebilir.

Genellikle polimer malzemeleri tasarlayan, analiz eden ve değiştiren bir mühendislik alanıdır. Polimer mühendisliği, petrokimya endüstrisi, polimerizasyon, polimerlerin yapısı ve karakterizasyonu, polimerlerin özellikleri, polimerlerin birleştirilmesi ve işlenmesi ve ana polimerlerin tanımı, yapı özellik ilişkileri ve uygulamalarının yönlerini kapsar.