İçeriğe atla

Puddling (metalurji)

Bir su birikintisi fırınının şematik çizimi

Puddling, bir pota veya fırında yüksek dereceli demir üretim aşamasındaki bir adımdır. Sanayi Devrimi sırasında Büyük Britanya'da icat edilmiştir. Erimiş pik demir, bir oksitleyici ortamda, bir yankı fırınında karıştırılarak dövme demir elde edilmiştir. Kömür kullanmadan ilk kayda değer miktarda değerli ve kullanışlı çubuk demirin (dövülebilir dövme demir) yapılması en önemli süreçlerden birisidir. Sonunda, fırın küçük miktarlarda özel çelikler yapmak için kullanılacaktır.

Kömürsüz çubuk demir üreten ilk süreç olmasa da, puding, açık ara en başarılı olanıydı ve daha önceki çömlekçilik ve damgalama işlemlerinin yanı sıra çok daha eski kömür işleme ve çiçeklenme işlemlerinin yerini almıştır. Bu, Büyük Britanya'da ve kısa bir süre sonra Kuzey Amerika'da demir üretiminin büyük bir genişlemesini sağlamıştır. Bu genişleme, demir endüstrisi söz konusu olduğunda Sanayi Devrimi'nin başlangıcını oluşturmaktadır. Eyfel Kulesi, köprüler ve Özgürlük Anıtı'nın orijinal çerçevesi de dahil olmak üzere, 19. yüzyıldaki dövme demir uygulamalarının çoğu, birikintili demir kullanmıştır.

Daha sonra fırınlar, iyi kalitede karbon çeliği üretmek için de kullanılmıştır. Bu son derece yetenekli bir sanattı ve hem yüksek karbonlu hem de düşük karbonlu çelikler, özellikle alet çeliğinin ağ geçidi teknolojisinin yanı sıra yüksek kaliteli kılıçlar, bıçaklar ve diğer silahlar için küçük ölçekte başarıyla üretilmiştir.

Tarihçesi

Song Yingxing tarafından yazılan 1637'de yayınlanan Tiangong Kaiwu ansiklopedisinde açıklanan wuchaoni arıtma süreci, erken bir su birikintisi süreci ile bazı benzerlikler göstermektedir.

Metal birikintileri oluşturarak çeliğin rafine edilmesi, MS 1. yüzyılda Han Hanedanlığı döneminde antik Çin'de zaten biliniyordu. Çelik yapım süreçlerindeki ilerleme, kılıç yapmak için pik demirden dövme demirin tekrar tekrar dövülmesi, katlanması ve istiflenmesi yoluyla çeliğin genel kalitesini iyileştirmiştir.[1]

Modern puddling, 18. yüzyılın ikinci yarısında Büyük Britanya'da, kömür kullanmadan pik demirden çubuk demir üretmek için geliştirilen birkaç işlemden birisidir. Daha önceki kömür yakıtlı işlemin yerini kademeli olarak aldı ve bir demirhanede gerçekleştirilmiştir.

Puddling ihtiyacı

Pik demir çok fazla serbest karbon içerir ve kırılgandır. Kullanılmadan önce ve bir demirci tarafından işlenmeden önce, dövme demirin ilk aşaması olan çubuk demir olarak daha dövülebilir bir forma dönüştürülmesi gerekmektedir.

Abraham Darby'nin 1709'da[2] Coalbrookdale'deki yüksek fırını için kok kömürünü başarılı bir şekilde kullanması demir fiyatını düşürmüştür. Ancak bu kok yakıtlı pik demir, mevcut yöntemlerle çubuk demire dönüştürülemediğinden başlangıçta kabul edilmemiştir.[3] Koktaki kükürt safsızlıkları onu 'sıcak kısa' veya ısıtıldığında kırılgan hale getirdi ve bu nedenle ince işleme süreci onun için uygun değildi. 1750'lere kadar, buharla çalışan üfleme fırın sıcaklıklarını, kükürdü çıkarmak için yeterli kirecin eklenmesine izin verecek kadar arttırdığında, kok pik demir kullanılmaya başlanmıştır. Ayrıca, onu iyileştirmek için daha iyi süreçler geliştirilmiştir.[3]

İcat

Yüksek fırın yenilikçisinin oğlu Abraham Darby II, 1749'da pik demiri çubuk demire dönüştürmeyi başarmıştır. Ancak süreci hakkında hiçbir ayrıntı bilinmiyor. Severn Nehri kıyısında da çalışan Cranage kardeşler, bunu deneysel olarak, demir ve kükürtlü kömürün ayrı tutulabileceği, kömürle çalışan bir yankı fırını kullanarak başarmışlardır. Demirin yalnızca ısı etkisiyle pik demirden çubuk demire dönüştürülebileceğini ilk öne sürenler onlardır. Havanın sağladığı oksijenin gerekli etkilerinden habersiz olmalarına rağmen, en azından daha önce yakıttan gelen maddelerle karışıma ihtiyaç olduğu şeklindeki yanlış kanıyı bırakmışlardır. Deneyleri başarılı olmuştur. 1766'da patent Nº851'i almışlardır. Ancak işlemlerinin ticari olarak benimsenmediği görülmektedir.[4]

1783'te, Dowlais'deki Peter Onions, daha büyük bir yankı fırını inşa etti. Bununla başarılı ticari su birikintisi yapmaya başladı ve 1370 numaralı patenti almıştır.

Su birikintisi fırını, Henry Cort tarafından 1783-84'te Hampshire'daki Fontley'de geliştirildi ve 1784'te patenti alındı. Cort, demirin aşırı ısınması ve 'yakması' riskinin bir kısmını önleyerek bacaya damperler eklemiştir. Cort'un işlemi, erimiş pik demiri bir oksitleyici atmosferde yankılı bir fırında karıştırmaktan ve böylece onu karbonsuzlaştırmaktan oluşuyordu. Demir "doğaya geldiğinde", yani macunsu bir kıvama geldiğinde, su birikintisi haline getirilmiş bir top haline getirilmiştir. Çakıldı ve yuvarlandı (aşağıda açıklandığı gibi). Dar çubukları haddeleme makinesine yivli merdanelerin bu uygulaması da Cort'un buluşudur. Cort, bu işlemi lisanslamada ve daha önceki işlemin Dowlais'teki komşuları tarafından daha önce icat edildiği Cyfarthfa gibi demir fabrikalarından bile gelir elde etmede başarılı oldu. Cort artık genellikle su birikintisi 'mucidi' olarak kabul edilmektedir.

Cort'un icadından doksan yıl sonra, bir Amerikan işçi gazetesi, Cort'un sisteminin avantajlarını hatırlatmıştır:

"Demir basitçe eritildiğinde ve herhangi bir kalıba döküldüğünde, dokusu taneciklidir ve çok fazla gerilme mukavemeti gerektiren herhangi bir kullanım için oldukça güvenilmez olacak kadar kırılgandır. Su birikintisi işlemi, bir su birikintisi içinde akan erimiş demirin karıştırılmasından ibaretti. ve yuvarlanma sürecini daha etkili hale getirmek için anotomik düzenini değiştirme etkisine sahipti."[5]

Cort'un süreci (patentli olduğu gibi), dönemin demirhaneleri için olağan hammadde olan gri dökme demir için değil, yalnızca beyaz dökme demir için çalışmıştır. Bu sorun muhtemelen Merthyr Tydfil'de su birikintisini biraz daha önceki bir sürecin bir unsuruyla birleştirerek çözülmüştür. Bu, 'rafineri' veya 'sönen yangın' olarak bilinen başka bir ocak türünü içermektedir.[6] Pik demir bunun içinde eritildi ve bir oluğa aktı. Cüruf ayrıldı ve erimiş demir üzerinde yüzdü ve oluğun sonundaki bir bent indirilerek çıkarılmıştır. Bu işlemin etkisi, metali silikondan arındırmak ve 'ince metal' olarak bilinen beyaz kırılgan bir metal bırakmaktı. Bu, su birikintisi fırınına şarj etmek için ideal malzemeydi. Sürecin bu versiyonu 'kuru su birikintisi' olarak biliniyordu ve bazı yerlerde 1890'a kadar kullanılmaya devam edilmiştir.

Gri demirin rafine edilmesinin alternatifi, "kaynama" veya "domuz kaynatma" olarak da bilinen "ıslak su birikintisi" olarak biliniyordu. Bu, Tipton'daki Joseph Hall adlı bir su birikintisi tarafından icat edilmiştir. Şarja hurda demir eklemeye başlamıştır. Daha sonra demir pulu (aslında pas) eklemeyi denemiştir. Sonuç muhteşemdi, çünkü fırın şiddetle kaynamıştır. Bu, tufaldeki oksitlenmiş demir ile pik demirde çözünen karbon arasındaki kimyasal bir reaksiyondur. Şaşırtıcı bir şekilde, ortaya çıkan su birikintisi topu iyi demir üretmiştir.

Su birikintisi ile ilgili büyük bir sorun, yatak için kum kullanıldığı için demirin neredeyse %50'sinin cürufla birlikte çekilmesiydi. Hall, yatak yerine kavrulmuş musluk cürufu kullanmış ve bu israfı yüzde 8'e, yüzyılın sonunda ise yüzde 5'e düşürmüştür.[7]

Hall daha sonra 1830'da Tipton'da Bloomfield Iron Works'ün kurulmasında ortak olmuştur. Firma 1834'ten itibaren Bradley, Barrows ve Hall olmuştur. Bu, 19. yüzyılın ortalarından sonlarına kadar en yaygın olarak kullanılan sürecin versiyonudur. Islak su birikintisi, kuru su birikintisinden (veya daha önceki herhangi bir işlemden) çok daha verimli olması avantajına sahipti. Kuru su birikintisinden elde edilebilecek en iyi demir verimi, 1,3 ton pik demirden bir ton demirdir (%77 verim), ancak ıslak su birikintisinden elde edilen verim yaklaşık %100 olmuştur.

Pudding fırınında yumuşak çelik üretimi, 1850'lerde Almanya'nın Vestfalya kentinde gerçekleştirilmiştir. Lohage, Bremme ve Lehrkind adına Büyük Britanya'da patenti alınmıştır. Sadece belirli cevher türlerinden yapılan pik demir ile çalışmıştır. Dökme demirin hızlı bir şekilde eritilmesi ve cürufun manganez açısından zengin olması gerekiyordu. Metal doğaya geldiğinde, daha fazla karbürleşme meydana gelmeden önce hızlı bir şekilde çıkarılması ve shingling yapılması gerekiyordu. Süreç, 1851'de Yorkshire'da (İngiltere) Bradford'daki Low Moor Ironworks'de ve 1855'te Fransa'da Loire vadisinde ele alındı. Yaygın olarak kullanılmıştır.

Su birikintisi süreci, çelik üreten Bessemer sürecinin devreye girmesiyle yer değiştirmeye başladı. Bu, maliyet ve zamanın bir kısmı için Aston işlemi kullanılarak dövme demire dönüştürülebilmektedir. Karşılaştırma için, bir su birikintisi fırını için ortalama boyut şarjı 800-900 lb (360–410 kg)[8] iken bir Bessemer dönüştürücü şarjı 15 kısa ton (13.600 kg) idi. Su birikintisi işlemi, su birikintisinin kaldırabileceği miktarla sınırlı olduğundan büyütülemedi. Sadece daha fazla fırın inşa ederek genişletilebilmektedir.

Süreç

Tek bir su birikintisi fırınının dış görünümü. A. Damper; B. Çalışma kapısı

İşlem, puding fırınının hazırlanmasıyla başlamaktadır. Bu, fırını düşük bir sıcaklığa getirmeyi ve ardından onu eritmeyi içermektedir. Damıtma, ızgarayı ve etrafındaki duvarları demir oksitlerle, tipik olarak hematitle boyama işlemidir. Bu, erimiş metalin fırında yanmasını önleyen koruyucu bir kaplama görevi görmektedir. Bazen hematit yerine ince dövülmüş cüruf kullanılmıştır. Bu durumda, külü eritmek için fırın 4-5 saat ısıtılmalı ve ardından şarj edilmeden önce soğutulmalıdır.[9]

Ya beyaz dökme demir ya da rafine demir, daha sonra şarj olarak bilinen bir işlem olan fırının ocağına yerleştirilir. Islak su birikintisi için hurda demir ve/veya demir oksit de ücretlendirilmektedir. Bu karışım daha sonra üst kısım eriyene kadar ısıtılır ve oksitlerin karışmaya başlaması sağlanır; bu genellikle 30 dakika sürmektedir.[8][10] Bu karışım, kuvvetli bir hava akımına tabi tutulur ve bir ucunda çengelli uzun çubuklar (su birikintisi çubukları veya ayaktakımı adı verilen) ile fırının kapılarından geçirilmektedir. Bu, oksitlerden gelen oksijenin, pik demirdeki, özellikle silisyum, manganez (cüruf oluşturmak için) ve bir dereceye kadar kükürt ve fosfordaki yabancı maddelerle reaksiyona girmesine yardımcı olur, bunlar fırının egzozuyla kaçan gazları oluşturulmaktadır.[11]

Daha sonra daha fazla yakıt eklenir ve sıcaklık yükseltilmektedir. Demir tamamen erir ve karbon yanmaya başlar. Islak su birikintisi olduğunda, eklenen demir oksit ile reaksiyonlar nedeniyle karbondioksit oluşumu, kütlenin kaynamış gibi görünmesine neden olan kabarcıkların oluşmasına neden olmaktadır. Bu işlem, cürufun üstte şişmesine neden olarak, abazaya yanmanın ilerleyişinin görsel bir göstergesini vermektedir. Karbon yandıkça, karışımın erime sıcaklığı 1.150 ila 1.540 °C'den (2.100 ila 2.800 °F) yükselir, dolayısıyla bu işlem sırasında fırının sürekli olarak beslenmesi gerekemktedir. Karışım içindeki karbon atomları, demir karışımının (buz üzerindeki yol tuzu gibi) erime noktasını düşüren çözelti içinde bir çözünen olarak hareket ettiğinden erime noktası artmaktadır.[12][13]

İki kişilik bir ekip olarak çalışan bir su birikintisi ve yardımcı, 12 saatlik bir vardiyada yaklaşık 1500 kg demir üretebilmektedir. Yorucu çalışma, ısı ve duman, su birikintilerinin çok kısa bir yaşam beklentisine sahip olmasına neden oldu ve çoğu 30'lu yaşlarında ölüyordu. Puddling hiçbir zaman otomatikleştirilememiştir. Çünkü su birikintisi topların ne zaman "doğaya geldiğini" algılamak zorundadır.[14][15]

Puddling fırını

Tek bir puding fırınının yatay (alt) ve dikey (üst) kesitleri. A. Şömine ızgarası; B. Ateş tuğlaları; C. Çapraz bağlayıcılar; D. Şömine; E. Çalışma kapısı; F. Ocak; G. Dökme demir tutma plakaları; H. Köprü duvarı

Puding fırını, yüksek fırında üretilen pik demirden ferforje veya çelik oluşturmak için kullanılan bir metal yapım teknolojisidir. Fırın, genel olarak yankılı fırın veya açık ocaklı fırın olarak bilinen bir sistem olan, yakıt demirle doğrudan temas etmeden sıcak havayı demirin üzerine çekmek için inşa edilmiştir. Bu sistemin en büyük avantajı, yakıtın kirliliklerini şarjdan ayrı tutmaktır.

Çiftpuddling fırıını düzeni

Ocak, demirin yüklendiği, eridiği ve su birikintisine girdiği yerdir. Ocağın şekli genellikle eliptiktir; 15–18 m (49–59 ft) uzunluğunda ve 1–12 m (3,3-39,4 ft) genişliğinde. Fırın beyaz demiri biriktirmek üzere tasarlanmışsa, ocak derinliği asla 50 cm'den (20 inç) fazla olmaz. Fırın gri demiri kaynatacak şekilde tasarlanmışsa, ortalama ocak derinliği 50–75 cm (20-30 inç) olur. Yükü eritmek için gereken büyük ısı nedeniyle, şarjla erimemesi için ızgaranın soğutulması gerekiyordu. Bu, üzerine sabit bir soğuk hava akışı geçirilerek veya ızgaranın altına su atılarak yapıldı.

Yakıtın yakıldığı şöminede kullanılan yakıta bağlı olarak boyutları değişen bir dökme demir ızgara kullanılmıştır. Bitümlü kömür kullanılıyorsa, ortalama ızgara boyutu 60 cm × 90 cm (2,0 ft × 3,0 ft) olur ve 25–30 cm (9,8-11,8 inç) kömür ile yüklenir. Antrasit kömür kullanılıyorsa ızgara 15 m × 12 m (49 ft × 39 ft) boyutundadır ve 50–75 cm (20-30 inç) kömür ile yüklenir.

Çift su birikintisi fırını, tek bir su birikintisi fırınına benzer, en büyük fark, iki su birikintisinin aynı anda fırını çalıştırmasına izin veren iki çalışma kapısı olmasıdır. Bu kurulumun en büyük avantajı, iki kat daha fazla ferforje üretmesidir. Ayrıca tek fırına göre daha ekonomik ve yakıt açısından daha verimlidir.

Kaynakça

  1. ^ Chen, Cheng-Yih (1987). Science and Technology in Chinese Civilization. World Scientific Pub Co Inc. (May 1987 tarihinde yayınlandı). s. 237. ISBN 978-9971501921. 
  2. ^ Schubert (1958), s. 99.
  3. ^ a b Schubert (1958), s. 100.
  4. ^ Schubert (1958), s. 106.
  5. ^ "The Puddling of Iron," The Workingman's Advocate [Chicago], vol. 9, no. 9 (January 25, 1873), pg. 1.
  6. ^ Referred to as a "finery" and "run-out fire" by Overman, but not to be confused with the finery in the finery forge.
  7. ^ Landes (1969), s. 33.
  8. ^ a b Overman, Fredrick (1854). The Manufacture of Iron, in All Its Various Branches. Philadelphia: H. C. Baird. ss. 267, 268, 287, 283, 344. 
  9. ^ Rajput, R.K. (2000). Engineering Materials. S. Chand. s. 223. ISBN 81-219-1960-6. 12 Temmuz 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Temmuz 2021. 
  10. ^ W. K. V. Gale, The Iron and Steel Industry: a Dictionary of Terms (David and Charles, Newton Abbot 1971), 165.
  11. ^ R. F. Tylecote, 'Iron in the Industrial Revolution' in R. F. Tylecote, The Industrial Revolution in Metals (Institute of Metals, London 1991), 236-40.
  12. ^ Smith, Carroll (1984). Engineer to Win. MotorBooks / MBI Publishing Company. ss. 53-54. ISBN 0-87938-186-8. 
  13. ^ W. K. V. Gale, The British Iron and Steel Industry (David and Charles, Newton Abbot, 1967), 70–79.
  14. ^ McNeil, Ian (1990). An Encyclopedia of the History of Technology. Londra: Routledge. s. 165. ISBN 0415147921. 
  15. ^ Landes (1969), s. 218.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kömür</span> katmanlı tortul çökellerin arasında bulunan katı, koyu renkli, karbon ve yanıcı gazlar bakımından zengin kayaç

Kömür, katmanlı tortul çökellerin arasında bulunan katı, koyu renkli, karbon ve yanıcı gazlar bakımından zengin kayaçtır. Taşkömürü torkugillerden oluşur. Kömür çoğunlukla diğer elementlerin değişken miktarlarda bulunmasıyla oluşur. Asıl bileşeni karbondur; bunun yanında değişken miktarda hidrojen, kükürt, oksijen ve azot içerir. Isı için yakılan bir fosil yakıt olan kömür dünyanın birincil enerjisinin yaklaşık dörtte birini ve elektriğinin beşte ikisini sağlar. Bazı demir ve çelik üretimi yapan işletmeler ve diğer endüstriyel faaliyetler kömürü yakar. Kömürün ekstraksiyonu ve kullanımı birçok erken ölüme ve çok fazla hastalığa neden olur. Kömür'den her yıl binlerce kişi erken ölüyor.

<span class="mw-page-title-main">Demir</span> sembolü Fe ve atom numarası 26 olan kimyasal element

Demir, simgesi Fe ve atom numarası 26 olan kimyasal bir elementtir.

<span class="mw-page-title-main">Çelik</span>

Çelik, demir elementi ile genellikle %0,02 ila %2,1 oranlarında değişen karbon miktarının bileşiminden meydana gelen bir alaşımdır. Çelik alaşımındaki karbon miktarları çeliğin sınıflandırılmasında etkin rol oynar. Karbon genel olarak demir'in alaşımlayıcı maddesi olsa da demir elementini alaşımlamada magnezyum, krom, vanadyum ve tungsten gibi farklı elementler de kullanılabilir. Karbon ve diğer elementler demir atomundaki kristal kafeslerin kayarak birbirini geçmesini engelleyerek sertleşme aracı rolü üstlenirler. Alaşımlayıcı elementlerin, çelik içerisindeki, değişen miktarları ve mevcut bulundukları formlar oluşan çelikte sertlik, süneklilik ve gerilme noktası gibi özellikleri kontrol eder. Karbon miktarı yüksek olan çelikler demirden daha sert ve güçlü olmasına rağmen daha az sünektirler.

<span class="mw-page-title-main">Stronsiyum</span> Sr sembollüne sahip, atom numarası 38 olan, toprak alkali metaller grubundan gümüşümsü beyaz renkli bir kimyasal element

Stronsiyum, Sr sembollüne sahip, atom numarası 38 olan, toprak alkali metaller grubundan gümüşümsü beyaz renkli bir kimyasal element. Oda sıcaklığında katı olan elementin atom ağırlığı 87,62 g/mol'dür. Stronsiyum, kimyasal olarak son derece reaktif olup, hava ile temas ettiği takdirde sarı rengine döner. Element sölestin ve strontianit minerallerinde bulunur. Elementin nükleer fisyon sonucunda oluşan 90Sr izotopu radyoaktiftir ve 28,90 yıllık bir yarılanma ömrüne sahiptir.

<span class="mw-page-title-main">Yüksek fırın</span>

Yüksek fırın, metal cevherlerini işlemekte kullanılan dikey izabe fırını.

<span class="mw-page-title-main">Paul Héroult</span> Fransız mucit (1863 – 1914)

Paul (Louis-Toussaint) Héroult, Fransız bir bilim insanıydı. Alüminyum eritmek için Hall-Héroult sürecinin mucitlerinden biriydi ve ilk başarılı ticari elektrik ark ocağını geliştirdi. Thury-Harcourt, Normandiya'da yaşadı.

<span class="mw-page-title-main">Sıcak daldırma galvanizleme</span> demir veya çeliğin erimiş çinko ile kaplanması işlemi

Galvaniz, 450-455 derecedeki erimiş çinkonun içine daldırılan çeliğin kaplanmasına denir. Çinko, demirle kuvvetli bağlar yaparak üçlü bir faz tabakası meydana getirir.

<span class="mw-page-title-main">Fırın</span>

Fırın, malzemeleri sıcak bir ortama maruz bırakmak için kullanılan bir araçtır. Fırının içi boş bir bölümü vardır ve bu bölüm kontrollü şekilde ısıtılır. Antik çağlardan beri kontrollü ısıtma gerektiren çeşitli işlerde fırın kullanılır.

<span class="mw-page-title-main">Dökme demir</span>

Dökme demirler, %2'den fazla karbon oranı içeren demir-karbon alaşımlarıdır. İçindeki karbonun grafit şeklinde olanlarına gri dökme demir, sementit şeklinde olanlara ise beyaz dökme demir denir. 1150 °C derece olan erime sıcaklığı çeliğinkinden düşüktür.

İzabe, maden cevherinin metal içeriğini yüksek sıcaklıkta indirgenme tepkimesi yardımıyla cevherin geri kalanından ayırma süreci. Pirometalurjinin yöntemlerinden biridir. Kimi metal oksitlerin indirgenmesi için yüksek sıcaklık yeterliyken pek çoğu için süreçte ısının yanında indirgeyici madde kullanılması da gerekir. Karbon genellikle kullanılan indirgeyicilerdendir.

<span class="mw-page-title-main">Bessemer ve Thomas Çeliği</span>

Bessemer ve Thomas Çeliği, çeliğin elde ediliş yöntemlerine göre sınıflandırılmış hallerinden birisidir. İlk defa 1856 yılında Henry Bessemer tarafından bulunan çelik elde ediliş yöntemi ardından Thomas Gillchrist tarafından 1876 yılında geliştirilmiş ve bu yöntem ile elde edilen tüm çeliklere Bessemer ve Thomas Çeliği adı verilmiştir.

<span class="mw-page-title-main">Metal işçiliği</span>

Metal işleme kullanışlı nesneler, parçalar, montajlar ve büyük ölçekli yapılar oluşturmak için metalleri şekillendirme sürecidir. Kelime olarak, devasa gemiler, binalar ve köprü'lerden hassas motor parçalarına ve narin mücevher'lere kadar her ölçekte nesne üretmek için çok çeşitli süreçleri, becerileri ve araçları kapsar.

<span class="mw-page-title-main">Odun gazı</span>

Odun gazı, benzin, dizel veya diğer yakıtlar yerine fırınlar, sobalar ve araçlar için yakıt olarak kullanılabilen bir sentez gazıdır. Üretim işlemi sırasında biyokütle veya diğer karbon içeren malzemeler, bir odun gazı jeneratörünün oksijenle sınırlı ortamında hidrojen ve karbonmonoksit üretmek için gazlaştırılır. Bu gazlar daha sonra karbondioksit, su ve ısı üretmek için oksijen bakımından zengin bir ortamda yakıt olarak yakılabilir.

<span class="mw-page-title-main">Jeneratör gazı</span>

Jeneratör gazı ya da üretici gaz, doğalgazın aksine, kömür gibi malzemelerden üretilen yakıt gazıdır. Hava ile kısmi yanma yoluyla çeşitli yakıtlardan üretilebilir, genellikle sabit bir sıcaklığı korumak ve hava gazının hidrojen ile zenginleştirilmesi yoluyla daha yüksek bir ısı içeriği gazı elde etmek için aynı anda su veya buhar enjeksiyonu ile modifiye edilebilir. Bu açıdan kömür gazı, kok fırını gazı, su gazı ve karbüratörlü su gazı gibi diğer "üretilmiş" gaz türlerine benzer. Üretici gaz, kok kömürü fırınları ve yüksek fırınlar, çimento ve seramik fırınlar gibi demir ve çelik üretimi için endüstriyel yakıt veya gaz motorları aracılığıyla mekanik güç olarak kullanılmıştır. Isıtma değerinde karakteristik olarak düşüktü, ancak yapım maliyeti ucuz olması nedeniyle büyük miktarlarda üretilmesi ve kullanılması mümkündü.

<span class="mw-page-title-main">Piroliz</span> Malzemelerin asal bir ortamda yüksek sıcaklıklarda termal ayrışmasıdır

Piroliz malzemelerin asal bir ortamda yüksek sıcaklıklarda termal ayrışmasıdır. Kimyasal bileşim değişikliğini içerir. Kelime Yunanca kökenli pyro ("ateş") ve lysis ("ayırma") unsurlarından türetilmiştir.

Sementit veya demir karbür, bir demir ve karbon bileşiğidir, daha iyi bir ifadeyle Fe3C formülüne sahip bir ara geçiş metal karbürdür. Ağırlık olarak %6.67 karbon ve %93,3 demirden oluşmaktadır. Sementitin kimyasal bileşimi Fe3C olmasına rağmen, kristal yapısı hücre başına 12 demir atomu ve 4 karbon atomu ile ortorombik kristal yapıya sahiptir. Normalde saf haliyle seramik olarak sınıflandırılan sert, kırılgan bir malzemedir ve demir metalurjisinde sıklıkla bulunan ve önemli bir bileşendir. Çoğu çelik ve dökme demirde sementit bulunurken alternatif demir yapım teknolojileri ailesine ait olan demir karbür prosesinde hammadde olarak üretilir.

<span class="mw-page-title-main">Metal tozu</span>

Metal tozu, toz formuna getirilmiş bir metaldir. Metal tozları genellikle mekanik olarak öğütülerek elde edilir. Bununla birlikte, kimyasal olarak veya elektrolitik yollarla da elde edilebilirler. Çok saf ve ince metal tozları, metal karbonillerin metal ve karbonmonoksite ayrıştırılmasıyla elde edilebilir. Karbonil demir, demir pentakarbonilin ayrışmasından elde edilir. Benzer şekilde nikel ve manganez tozları da üretilebilir. Toz halinde bulunabilen metaller arasında alüminyum tozu, nikel tozu, demir tozu ve çok daha fazlası yer almaktadır. Metalleri bu toz formuna ayırmanın dört farklı yolu vardır:

Kavaklama, safsızlık olarak bakır oksit içeren bakırın saflaştırılmasında ve ayrıca safsızlık olarak kalay oksit (stannik oksit veya "SnO2") içeren kalayın saflaştırılmasında kullanılan bir metalürjik yöntemdir. Genellikle erimiş blister bakır formundaki saf olmayan metal, iki aşamalı rafinasyon işlemi için bir anot fırınına yerleştirilir. İlk aşamada, demir oksit ve kükürt dioksit oluşturmak için erimiş metale hafifçe hava üflenerek kükürt ve demir uzaklaştırılır. Demir oksitler ya sıyrılır ya da bakırın üstünden dökülür ve gaz hâldeki kükürt dioksit gaz çıkış sistemi yoluyla fırından çıkar. İlk oksidasyon aşaması tamamlandığında, ikinci aşama olan kavaklama başlar. Bu, bakır oksitteki oksijenle reaksiyona girerek bakır oluşturmak için normalde doğalgaz veya mazot (ancak amonyak, LPG ve nafta da kullanılabilir) gibi bir indirgeyici maddenin kullanılmasını içerir. Geçmişte, yeni kesilmiş ("yeşil") ağaç kütükleri kullanılıyordu. Bu kütüklerde bulunan özsu, indirgeyici madde olarak işlev görür. Bakırın ısısı kütüğün odun gazı (CO2 ve H2) yaymasına neden olur ve bu da bakır oksitin bakıra indirgenmesini sağlar.

Kalsinasyon, katı kimyasal bileşiklerin ısıl işlemine atıfta bulunur; bu sayede bileşik, genellikle safsızlığı veya uçucu maddeleri uzaklaştırmak ve/veya termal ayrışmaya maruz kalmak amacıyla, ortamdaki sınırlı oksijen kaynağı altında erimeden yüksek sıcaklığa yükseltilir.

<span class="mw-page-title-main">Metalurjik fırın</span>

Daha yaygın olarak fırın olarak adlandırılan bir metalürjik fırın, öncelikle demir ve çelik üretiminde gangı çıkarmak için metal cevherini ısıtmak ve eritmek için kullanılan endüstriyel bir fırındır. Bir fırını besleyen ısı enerjisi doğrudan yakıtın yanmasıyla, elektrik ark ocağı gibi elektrikle veya indüksiyon fırınlarında indüksiyonla ısıtma yoluyla sağlanabilir. Metalürjide belirli metal ve cevherlerle çalışmak için kullanılan birkaç farklı fırın türü vardır.