İçeriğe atla

Proton bozunması

Georgi–Glashow modelindeki parçacıklar için zayıf izospinler, zayıf hiper yükler ve renk yükleri modeli. Burada, iki yukarı ve bir aşağı kuarktan oluşan bir proton, elektrik yükü -4/3 olan bir X bozonu aracılığıyla bir yukarı ve anti-yukarıdan oluşan bir pion'a ve bir pozitron'a bozunur.

Parçacık fiziğinde proton bozunması, protonun nötr bir pion ve bir pozitron gibi daha hafif atom altı parçacıklara bozunduğu varsayımsal bir parçacık bozunma biçimidir.[1] Proton bozunumu hipotezi ilk olarak 1967'de Andrey Saharov tarafından formüle edildi. Önemli deneysel çabalara rağmen, proton bozunması hiçbir zaman gözlemlenmedi. Bir pozitron aracılığıyla bozunursa, protonun yarı ömrü en az 1,67 x 1034 yıl olarak sınırlandırılır.[2]

Standart Model'e göre, bir baryon türü olan proton, baryon sayısı (kuark sayısı) korunduğu için kararlıdır (normal şartlar altında; istisna için kiral anomaliye bakınız). Bu nedenle, protonlar en hafif (ve dolayısıyla en az enerjili) baryon oldukları için kendi başlarına diğer parçacıklara bozunmazlar. Pozitron emisyonu ve Elektron yakalama –protonun nötrona dönüştüğü radyoaktif bozunma biçimleri– proton bozunması değildir, çünkü proton atom içindeki diğer parçacıklarla etkileşime girer.

Standart Modelin ötesindeki bazı büyük birleşik teoriler (BBK, GUT [Grand Unified Theory]) baryon sayısı simetrisini açıkça kırarak protonların Higgs bozonu, manyetik tek kutuplar veya 1031 ila 1036 yıllık yarı ömrü olan yeni X bozonları aracılığıyla bozunmasına izin verir. Karşılaştırma için, evren yaklaşık 1010 yaşındadır.[3] Bugüne kadar, BBK'ların öngördüğü yeni fenomenleri (proton bozunması veya manyetik monopollerin varlığı gibi) gözlemleme girişimleri başarısız oldu.

Kuantum tünelleme, proton bozunmasının mekanizmalarından biri olabilir.[4][5][6]

Kuantum kütleçekimi[7] (sanal kara delikler ve Hawking ışınımı yoluyla), yukarıdaki GUT ölçeği bozulma aralığının çok ötesinde büyüklüklerde veya yaşamlarda ve ayrıca süpersimetride ekstra boyutlarda bir proton bozunma alanı sağlayabilir.[8][9][10]

Ayrıca bakınız

Kaynakça

  1. ^ Radioactive decays by Protons. Myth or reality?, Ishfaq Ahmad, The Nucleus, 1969. ss. 69–70
  2. ^ Bajc (2016). "Threshold corrections to dimension-six proton decay operators in non-minimal SUSY SU(5) GUTs". Nuclear Physics B. 910: 1. doi:10.1016/j.nuclphysb.2016.06.017. 
  3. ^ "Do protons decay?". symmetry magazine (İngilizce). 25 Ekim 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Kasım 2020. 
  4. ^ Talou (1998). "Time-dependent properties of proton decay from crossing single-particle metastable states in deformed nuclei". Physical Review C. 58 (6): 3280-3285. doi:10.1103/PhysRevC.58.3280. 
  5. ^ "adsabs.harvard.edu". 17 Nisan 2021 tarihinde kaynağından arşivlendi. 
  6. ^ Trixler (2013). "Quantum Tunnelling to the Origin and Evolution of Life". Current Organic Chemistry. 17 (16): 1758-1770. doi:10.2174/13852728113179990083. PMC 3768233 $2. PMID 24039543. 
  7. ^ Bambi (2008). "Dangerous implications of a minimum length in quantum gravity". Classical and Quantum Gravity. 25 (19): 195013. doi:10.1088/0264-9381/25/19/195013. 
  8. ^ Adams (2001). "Proton Decay, Black Holes, and Large Extra Dimensions - NASA/ADS". International Journal of Modern Physics A. 16 (13): 2399-2410. doi:10.1142/S0217751X0100369X. 18 Temmuz 2021 tarihinde kaynağından arşivlendi. 
  9. ^ Al-Modlej (2019). "Proton decay and the quantum structure of space–time". Canadian Journal of Physics. 97 (12): 1317-1322. doi:10.1139/cjp-2018-0423. 
  10. ^ Alsaleh (2017). "Virtual black holes from the generalized uncertainty principle and proton decay". Europhysics Letters. 118 (5): 50008. doi:10.1209/0295-5075/118/50008. 16 Şubat 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Nisan 2022. 

Konuyla ilgi yayınlar

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektron</span> Temel elektrik yüküne sahip atomaltı parçacık

Elektron, eksi bir temel elektrik yüküne sahip bir atomaltı parçacıktır. Lepton parçacık ailesinin ilk nesline aittir ve bileşenleri ya da bilinen bir alt yapıları olmadığından genellikle temel parçacıklar olarak düşünülürler. Kütleleri, protonların yaklaşık olarak 1/1836'sı kadardır. Kuantum mekaniği özellikleri arasında, indirgenmiş Planck sabiti (ħ) biriminde ifade edilen, yarım tam sayı değerinde içsel bir açısal momentum (spin) vardır. Fermiyon olmasından ötürü, Pauli dışarlama ilkesi gereğince iki elektron aynı kuantum durumunda bulunamaz. Temel parçacıkların tamamı gibi hem parçacık hem dalga özelliklerini gösterir ve bu sayede diğer parçacıklarla çarpışabilir ya da kırınabilirler.

<span class="mw-page-title-main">Nötron</span> Yüke sahip olmayan atomaltı parçacık

Nötron, sembolü n veya n⁰ olan, bir atomaltı ve nötr bir parçacıktır. Proton ile birlikte, atomun çekirdeğini meydana getirir. Bir yukarı ve iki aşağı kuark ve bunların arasındaki güçlü etkileşim sayesinde oluşur. Proton ve nötron yaklaşık olarak aynı kütleye sahiptir fakat nötron daha fazla kütleye sahiptir. Nötron ve protonun her ikisi nükleon olarak isimlendirilir. Nükleonların etkileşimleri ve özellikleri nükleer fizik tarafından açıklanır. Nötr hidrojen atomu dışında bütün atomların çekirdeklerinde nötron bulunur. Her atom farklı sayıda nötron bulundurabilir. Proton ve nötronlar, kuarklardan oluştukları için temel parçacık değildirler.

<span class="mw-page-title-main">Kuark</span> Temel parçacık türü

Kuark, bir tür temel parçacık ve maddenin temel bileşenlerinden biridir. Kuarklar, bir araya gelerek hadronlar olarak bilinen bileşik parçacıkları oluşturur. Bunların en kararlıları, atom çekirdeğinin bileşenleri proton ve nötrondur. Renk hapsi olarak bilinen olgudan ötürü kuarklar asla yalnız bir şekilde bulunmaz, yalnızca baryonlar ve mezonlar gibi hadronlar dahilinde bulunabilir. Bu sebeple kuarklar hakkında bilinenlerin çoğu hadronların gözlenmesi sonucunda elde edilmiştir.

Parçacık fiziğinde bir hadron, güçlü etkileşim tarafından bir arada tutulan taneciklerden oluşan bir bileşik parçacıktır.

Yukarı kuark en hafif kuarktır, temel bir parçacıktır ve maddenin önemli bir bileşenidir. Aşağı kuarkla birlikte atom çekirdeğini meydana getiren proton ve nötronu oluşturur. Birinci nesil olarak sınıflandırılırlar. Elektrik yükü +2/3 e olup çıplak kütleleri 2,2+0,5
-0,4
 MeV/c2
olarak ölçülmüştür. Bütün kuarklar gibi yukarı kuark da 1/2 spine sahip temel fermiyondur ve dört temel etkileşimin hepsinden etkilenir. Yukarı kuarkın antiparçacığı olan yukarı antikuark ile elektriksel yük işareti gibi birkaç özellikte farklılaşır.

<span class="mw-page-title-main">Nükleer fizik</span> atom çekirdeğinin yapısı ve davranışı ile uğraşan fizik alanı

Nükleer fizik veya çekirdek fiziği, atom çekirdeklerinin etkileşimlerini ve parçalarını inceleyen bir fizik alanıdır. Nükleer enerji üretimi ve nükleer silah teknolojisi nükleer fiziğin en çok bilinen uygulamalarıdır fakat nükleer tıp, manyetik rezonans görüntüleme, malzeme mühendisliğinde iyon implantasyonu, jeoloji ve arkeolojide radyo karbon tarihleme gibi birçok araştırma da nükleer fiziğin uygulama alanıdır.

<span class="mw-page-title-main">Nötrino</span> atom altı ya da temel parçacıklardan biri

Nötrino, ışık hızına yakın hıza sahip olan, elektriksel yükü sıfır olan ve maddelerin içinden neredeyse hiç etkileşmeden geçebilen temel parçacıklardandır. Bu özellikleri nötrinoların algılanmasını oldukça zorlaştırmaktadır. Nötrinoların çok küçük, ancak sıfır olmayan durgun kütleleri vardır. Yunan alfabesindeki ν (nü) ile gösterilir.

<span class="mw-page-title-main">Nükleon</span> atom çekirdeğinin temel parçaları

Nükleon, nötron ve protonların ortak ismidir. Nükleon, nötron ve protonun toplamıyla bulunur. Nükleonlar, atom çekirdeğinin temel parçalarıdır ve 1960'lara kadar bunların temel parçacıklar olduğu düşünülüyordu. Yine o günlerde etkileşimleri güçlü etkileşimler olarak adlandırılıyordu. Bugün ise kuark ve gluonlardan oluşan bileşik parçacıklar olarak bilinmektedirler. Nükleonlar, atomaltı parçacıkların baryon sınıfına aittirler.

Preonlar parçacık fiziğinde, kuarklar ve leptonların altparçacıkları olan nokta parçacıklardır. Terim 1974’te, Jogesh Pati ve Muhammed Abdüsselam tarafından oluşturulmuştur. Preon modellerine olan ilgi, 1980’lerde zirve noktasına ulaşmıştır ancak parçacık fiziği Standart Model'i, fiziğin kendisini en başarılı şekilde tanımlamaya devam ettiğinden ve lepton ile kuark kompozitleri hakkında hiçbir deneysel veri bulunmadığından dolayı bu ilgi azalmıştır.

<span class="mw-page-title-main">Pentakuark</span>

Pentakuark, birbirlerine bağlı durumdaki dört kuark ile bir antikuarktan oluşan atomaltı parçacıktır. Kuarkların +1/3, antikuarkların ise - 1/3 baryon sayısına sahip olmalarından ötürü pentakuarkların toplam baryon sayısı 1'dir ve bu da pentakuarkların baryon olarak tanımlanmasını sağlar. Normal baryonların aksine üç değil de beş kuark bulundurmasından ötürü egzotik baryon olarak sınıflandırılır.

<span class="mw-page-title-main">Egzotik hadron</span>

Egzotik hadron, kuarklar ile gluonlardan meydana gelen, sıradan hadronların aksine iki ya da üç kuarktan fazlasını içeren atomaltı parçacıktır. Egzotik baryonlar, üç kuarka sahip sıradan baryonlardan; egzotik mezonlar ise birer kuark ve antikuarka sahip sıradan mezonlardan ayrılır. Teoride, renk yükü beyaz olduğu müddetçe bir hadronun kuark sayısında herhangi bir limit yoktur.

<span class="mw-page-title-main">Baryonlar listesi</span> Vikimedya liste maddesi

Baryonlar, üç kuarktan meydana gelen bileşik parçacıklardır. Birer kuark ile antikuarktan oluşan bozonlar gibi baryonlar da, yalnızca kuark veya antikuarkların oluşturduğu parçacıkların yer aldığı hadronlar grubuna dahildir. Kuarklardan meydana geldiği için baryonlarda güçlü etkileşim görülür. Her bir baryonun, kendisine karşılık gelen ve antibaryon olarak adlandırılan birer antiparçacık vardır. Antibaryonlarda, her bir kuark yerine bu kuarklara karşılık gelen antikuarklar bulunur.

Ters beta bozunması, genelde IBD olarak kısaltılır, elektron antinötrinosunun bir protonu saçması ile pozitron ve nötron oluşmasını içeren nükleer reaksiyon. Bu bozunma nötrino detektörlerinde elektron antinötrino tespiti için yaygın olarak kullanılır.

Ksi baryonları, birinci çeşni nesillerinden bir kuarka, daha yüksek çeşnili nesillerinden ise iki kuarka sahip, Ξ sembolüyle gösterilen hadron parçacığı ailesidir. Bu nedenlerden ötürü bu tip parçacıklar birer baryondur, toplam izospinleri 1/2'dir ve nötr olabildikleri gibi +2, +1 ya da -1 temel yüke sahip olabilirler. Yüklü Ksi baryonları ilk kez 1952'de, Manchester grubu tarafından gerçekleştirilen kozmik ışın deneyleri sırasında gözlemlenmiştir. Nötr Ksi baryonlarının ilk kez gözlemlenmesi ise 1959'da, Lawrence Berkeley Ulusal Laboratuvarı'nda gerçekleştirildi. Kararsız durumları, bozunma zinciri sonucunda daha hafif parçacıklara bozunmaları sebebiyle geçmişte çağlayan parçacıklar olarak da anılmaktaydılar.

Omega baryonları, birinci çeşni nesillerinden (yukarı ve aşağı kuarklar) herhangi birini içermeyen, daha yüksek çeşnili nesillerinden (garip, tılsım ve alt kuarklar) üç kuarka sahip, Ω sembolüyle gösterilen hadron parçacığı ailesidir. Hadronlaşma için gereken güçlü etkileşim süresinin altında (5×10-25 s) ortalama yaşam süresine sahip olmaları nedeniyle üst kuark içeren bir omega baryonu gözlemlenmemiş ve gözlemlenmesi de beklenmemektedir. Bu nedenlerden ötürü bu tip parçacıklar birer baryondur, toplam izospinleri 0'dır ve nötr olabildikleri gibi +1 temel yüke sahip olabilirler. Üç garip kuarktan oluşan
Ω-
, 1964 yılında gözlemlenmiştir ve keşfedilen ilk omega baryonudur.

Hiperon bir grup atomaltı parçacığın ortak adıdır. Hiperonların spin sayıları tam sayı olmadığından fermion, güçlü etkileşimden etkilendikleri için hadron ve üç kuarktan oluştukları için de baryon sayılırlar. Bu yönüyle nötron ve proton gibi parçacıklarla aynı sınıfta yer alırlar. Ancak nötron ve protonun aksine yapılarındaki kuarklardan en az biri garip kuarktır. Ayrıca daha büyük kütleye sahiplerdir ve 10 −10 saniyeden daha kısa ömürleri ile çok kararsız parçacıklardır. Hiperonlar 1950 li yıllarda keşfedildi. Daha sonra kuarkların keşfi sonucunda temel parçacık olmadıkları anlaşıldı.

<span class="mw-page-title-main">Antinötron</span> Nötronun karşıt parçacığı

Antinötron, nötrondan sadece bazı özelliklerinin eşit büyüklükte fakat zıt işarete sahip olması nedeniyle farklılık gösteren, nötronun antiparçacığıdır. Nötron ile aynı kütleye sahiptir ve net elektrik yükü yoktur, ancak karşıt baryon sayısına sahiptir. Bunun nedeni antinötronun antikuarklardan oluşması ve nötronların da kuarklardan oluşmasıdır. Antinötron, bir yukarı antiquark ve iki aşağı antikuarktan oluşur.

Parçacık hızlandırıcılarda sentezlenen yapay bir element olan küriyum (96Cm), bu yüzden bir standart atom ağırlığına sahip değildir. Tüm yapay elementler gibi kararlı izotopları yoktur. 1944'te sentezlenen ilk izotopu olan 242Cm 162,8 milisaniyelik yarılanma süresine sahipti. Elementin, kütle numarası 233 ile 251 arasında bilinen 19 radyoizotopunun yanı sıra bilinen 10 nükleer izomeri bulunmaktadır. En uzun ömre sahip izotop, 15,6 milyon yıllık yarı ömre sahip 247Cm'dir.

Bizmut-209 (209Bi, Bi-209), bizmutun bir izotopudur. 2,01×1019 yıllık yarı ömrüyle, alfa bozunmasına uğrayan bilinen radyoizotopların arasında en uzun yarı ömre sahip olanı konumundadır. 83 proton ile sihirli sayı olan 126 nötrona sahip olup atom kütlesi 208,9803987 akb'dir.

X17 parçacığı, bazı anormal ölçüm sonuçlarını açıklamak için Attila Krasznahorkay ve çalışma arkadaşları tarafından öne sürülen varsayımsal bir atom altı parçacıktır. Bu parçacık, berilyum-8 atom çekirdeklerinin geçirdiği bir nükleer bozunma sırasında üretilen parçacıkların ve kararlı helyum atomlarının bozunumunda üretilen parçacıkların hareket doğrultularında gözlemlenen geniş açıları açıklamak için öne sürülmüştür. X17 parçacığı, karanlık madde ile muhtemelen bir bağlantısı olan varsayımsal beşinci bir kuvvetin kuvvet taşıyıcısı olabilir. Parçacığın protofobik ve kütlesi yaklaşık 17 MeV olan bir vektör bozonu olduğu düşünülmektedir.