İçeriğe atla

Protein agregasyonu

Yanlış katlanmış proteinler protein agregatları veya amiloid fibrilleri oluşturabilir, bozulabilir veya doğal yapısına geri dönebilir.

Protein agregasyonu, yanlış katlanmış proteinlerin hücre içinde veya dışında toplandığı biyolojik bir fenomendir.[1][2] Bu protein agregatları genellikle hastalıklar ile ilişkilidir. Aslında, protein agregatları, ALS, Alzheimer, Parkinson ve prion hastalıkları dahil olmak çok çeşitli hastalıklarda rol oynamaktadır.[3][4]

Sentezden sonra proteinler tipik olarak en termodinamik olarak uygun olan belirli bir üç boyutlu konformasyona (yani doğal durumları) katlanır.[5] Bu katlama işlemi hidrofobik etki tarafından yönlendirilir: proteinin hidrofobik (su sevmeyen) kısımları, proteinin iç kısmına gömülerek hücrenin hidrofilik (su seven) ortamından korunur. Böylece, bir proteinin dış kısmı tipik olarak hidrofilikken iç kısım tipik olarak hidrofobiktir.

Protein yapıları, iki sistein amino asiti arasındaki kovalent olmayan etkileşimler ve disülfür bağları ile stabilize edilir. Kovalent olmayan etkileşimler iyonik etkileşimleri ve zayıf van der waals etkileşimlerini içerir. İyonik etkileşimler bir anyon ve bir katyon arasında oluşur ve proteinin stabilize edilmesine yardımcı olan tuz köprülerini oluşturur. Van der waals etkileşimleri arasında polar olmayan etkileşimler (ör. London dispersiyon kuvvetleri ) ve polar etkileşimler (yani hidrojen bağları, dipol-dipol bağı) bulunur. Bunlar, bir alfa sarmalı veya beta tabakası gibi bir proteinin ikincil yapısında ve üçüncül yapısında önemli bir rol oynar. Bir proteindeki amino asitler arasındaki etkileşimler, o proteinin son yapısının belirlenmesinde çok önemli bir rol oynar.

Amino asit dizisindeki bir değişiklikle olabileceği gibi kovalent olmayan etkileşimlerde değişiklikler olduğunda da, protein yanlış katlanmaya veya açılmaya karşı hassastır. Bu durumlarda, hücre proteinin yeniden katlanmasına veya katlanmamış proteinin parçalanmasına yardımcı olmazsa, katlanmamış/yanlış katlanmış protein, kendisine ait açıkta kalan hidrofobik kısımlarının diğer proteinlerin açıkta kalan hidrofobik yamalarıyla etkileşime girmesi ile, agregatlar oluşturabilir.[6][7] Oluşabilecek üç ana protein agregat türü vardır: amorf agregatlar, oligomerler ve amiloid fibriller.[8]

Nedenler

Protein agregasyonu çeşitli nedenlerden dolayı ortaya çıkabilir. Bu nedenler kategorilere ayrılabilir, aşağıda detaylandırılan dört sınıf vardır.

Mutasyonlar

DNA dizisinde meydana gelen mutasyonlar proteinin amino asit dizisini etkileyebilir veya etkilemeyebilir. Sekans etkilendiğinde, farklı bir amino asit, proteinin katlanmasını etkileyen yan zincirler arasındaki etkileşimleri değiştirebilir. Bu durum proteinin yanlış katlanmasına veya katlanmamasına ve proteininin normalde iç kısımlarda gömülü olması gerekn hidrofobik kısımlarının açıkta kalmasına sebep olur. Açıkta kalan hidrofobik kısımlar, başka bir yanlış katlanmış veya katlanamamış proteinin hidrofobik kısımları ile etkileşerek proteinlerin birbirine kenetlenmesini ve yani agregat oluşumunu sağlayabilir. Alternatif olarak, gene açıkta kalan hidrofobik kısımlar, normal bir proteinin dış kısmındaki hidrofobik parçalar ile etkileşerek de agregat oluşumuna sebebiyet verebilir.

Etkilenen proteinlerin kendisindeki mutasyonlara ek olarak, protein agregasyonuna, yeniden katlanma yolu (moleküler şaperonlar) veya ubikitin-proteazom yolu (ubikitin ligazlar) gibi düzenleyici yolaklardaki proteinlerdeki mutasyonlar da neden olabilir.[9] Şaperonlar, proteinin katlanması için güvenli bir ortam sağlayarak proteinin yeniden katlanmasına yardımcı olur. Ubikitin ligazları, ubikitin modifikasyonu yoluyla degradasyon için proteinleri hedefler.

Protein sentezi ile ilgili sorunlar

Protein agregasyonu, transkripsiyon veya translasyon sırasında ortaya çıkan problemlerden kaynaklanabilir.[10] Bu işlemlerde problemler ortaya çıkarsa, bu proteinin yanlış bir şekilde katlanmasına ve protein agregasyonuna sebep olabilir.

Çevresel stresler

Aşırı sıcaklıklar ve pH veya oksidatif stres gibi çevresel stresler de protein agregasyonuna yol açabilir.[11]

Aşırı sıcaklıklar, amino asit kalıntıları arasındaki kovalent olmayan etkileşimleri zayıflatabilir ve dengesini bozabilir. Proteinin pH aralığının dışındaki pH'lar, amino asitlerin protonasyon durumunu değiştirebilir, bu da kovalent olmayan etkileşimleri artırabilir veya azaltabilir. Bu aynı zamanda daha az stabil etkileşimlere ve protein açılmasına neden olabilir.

Oksidatif stres, reaktif oksijen türleri gibi radikallerden kaynaklanabilir. Bu kararsız radikaller, amino asitlere saldırarak yan zincirlerin (örn. Aromatik yan zincirler, metiyonin yan zincirler) oksidasyonuna ve/veya polipeptit bağlarının yarılmasına yol açabilir.[12] Bu, proteini doğru bir şekilde bir arada tutan kovalent olmayan etkileşimleri etkileyebilir, bu da protein dengesizleşmesine neden olabilir ve proteinin açılmasına sebep olabilir.[11]

Yaşlanma

Hücreler, protein agregatlarını yeniden katlayabilen veya parçalayan mekanizmalara sahiptir. Bununla birlikte, hücreler yaşlandıkça, bu kontrol mekanizmaları zayıflar ve hücre, agregaları daha az çözebilir hale gelir.[11]

Kaynakça

  1. ^ Aguzzi (Mart 2010). "Protein aggregation diseases: pathogenicity and therapeutic perspectives". Nature Reviews Drug Discovery. 9 (3). ss. 237-48. 
  2. ^ Stefani (Kasım 2003). "Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution". J Mol Med (Berl). 81 (11). ss. 678-99. 
  3. ^ De Felice (Temmuz 2004). "Formation of amyloid aggregates from human lysozyme and its disease-associated variants using hydrostatic pressure". FASEB J. 18 (10). ss. 1099-101. 
  4. ^ Tanzi (Şubat 2005). "Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective". Cell. 120 (4). ss. 545-55. 
  5. ^ Brüning (1 Ocak 2015). "Misfolded proteins: from little villains to little helpers in the fight against cancer". Frontiers in Oncology. Cilt 5. s. 47. 
  6. ^ Gething (Ocak 1992). "Protein folding in the cell". Nature. 355 (6355). ss. 33-45. 
  7. ^ Roberts (Aralık 2007). "Non-native protein aggregation kinetics". Biotechnol Bioeng. 98 (5). ss. 927-38. 
  8. ^ David L. Nelson; Michael M. Cox (21 Kasım 2012). Lehninger Principles of Biochemistry (İngilizce). W. H. Freeman. ISBN 978-1-4292-3414-6. 
  9. ^ Berke (1 Haziran 2003). "Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration". Current Opinion in Genetics & Development. 13 (3). ss. 253-261. 
  10. ^ Molecular Biology. ISBN 978-0-07-352532-7. 
  11. ^ a b c Tyedmers (Kasım 2010). "Cellular strategies for controlling protein aggregation". Nature Reviews Molecular Cell Biology. 11 (11). ss. 777-788. 
  12. ^ Stadtman (29 Temmuz 2003). "Free radical-mediated oxidation of free amino acids and amino acid residues in proteins". Amino Acids (İngilizce). 25 (3–4). ss. 207-218. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Protein</span> polipeptitlerin işlevsellik kazanması sonucu oluşan canlıların temel yapı birimi

Proteinler, bir veya daha fazla uzun amino asit artık zincirini içeren büyük biyomoleküller ve makromolekül'lerdir. Proteinler organizmalar içinde, hücrelere yapı ve organizmalar sağlayarak ve molekülleri bir konumdan diğerine taşıyarak metabolik reaksiyonları katalizleme, DNA kopyalama, uyaranlara yanıt verme dahil olmak üzere çok çeşitli işlevler gerçekleştirir. Proteinler, genlerinin nükleotit dizisi tarafından dikte edilen ve genellikle faaliyetini belirleyen özel 3D yapıya protein katlanmasıyla sonuçlanan amino asit dizilimlerinde birbirlerinden farklıdır.

<span class="mw-page-title-main">Amino asit</span> Proteinlerin temel yapı taşı

Amino asitler, proteinleri oluşturan temel yapı taşlarıdır.

<span class="mw-page-title-main">Taşıyıcı RNA</span> protein sentezinde görevli bir RNA

Taşıyıcı RNA hücrelerde protein sentezi sırasında büyüyen polipeptit zincirine spesifik bir amino asit ekleyen küçük bir RNA molekülüdür. Amino asidin bağlanması 3' ucundadır. Bu kovalent bağlantı aminoasil tRNA sentetaz tarafından katalizlenir. Ayrıca, antikodon olarak adlandırılan üç bazlık bir bölge vardır, bu bölge mRNA üzerinde kendisine karşılık gelen üç bazlık bir kodon bölgesi ile baz eşleşmesi yapar. Her tip tRNA molekülü sadece tek tip bir amino asite bağlanabilir, ama genetik kod aynı amino asite karşılık gelen birden çok kodon bulunduğu için, farklı antikodonlara sahip tRNA'lar aynı amino asidi taşıyabilir.

<span class="mw-page-title-main">Protein biyosentezi</span>

Protein biyosentezi, hücrenin protein sentezlenmesi için gereken bir biyokimyasal süreçtir. Bu terim bazen sadece protein translasyonu anlamında kullanılsa da transkripsiyon ile başlayıp translasyonla biten çok aşamalı bir süreçtir. Prokaryotlarda ve ökaryotlarda ribozom yapısı ve yardımcı proteinler bakımından farklılık göstermesine karşın, temel mekanizma korunmuştur.

<span class="mw-page-title-main">Translasyon</span> Protein sentezine ilişkin hücresel süreç

Translasyon, transkripsiyon sonucu oluşan mRNA'lardaki koda uygun olarak ribozomlarda gerçekleştirilen amino asit zinciri veya polipeptit sentezi sürecidir, daha sonra üretilen amino asit zinciri veya polipeptit uygun bir şekilde katlanarak etkin bir protein haline gelmektedir. Translasyon, protein biyosentezinin ilk aşamasıdır. 4 harfli DNA dilindeki mesajın 20 harfli amino asid diline çevrilmesinden ötürü, İngilizce terminolojide "çeviri" anlamına gelen translation sözcüğü kullanılmaktadır. Bu terim Türkçeye translasyon olarak geçmiştir. Translasyon hücrenin sitoplazmasında gerçekleşir. Sitoplazmada bulunan iki ribozom alt birimi translasyon sırasında mRNA zincirinin 5' ucuna bağlanır. Ribozom üzerindeki bağlanma bölgelerinde, mRNA'daki baz üçlülerini (kodon) tRNA'daki tamamlayıcıları olan antikodonlara bağlar. mRNA'daki kodonlara karşılık gelen antikodonu bulunduran tRNA'ların art arda eklenmesi sırasında tRNA'nın 3' ucuna bağlanmış olan amino asitler birbirine bağlanarak polipeptit zincirini oluşturur.

<span class="mw-page-title-main">Nokta mutasyon</span>

Nokta ya da gen mutasyonları, DNA nükleotit dizisinde oluşan ve gelecek nesile aktarılabilen değişiklikler olarak adlandırılırlar.

<span class="mw-page-title-main">DNA onarımı</span> Hücresel mekanizma

DNA onarımı, DNA moleküllerindeki hataları onarım mekanizmalarını tanımlamaktadır. İnsan hücrelerinde metabolik aktiviteler ve çevresel faktörler sonucu günde 1 milyon hücrenin zarar görmesi olasıdır. Bu etkenler, DNA'nın yapısını ve dahası diğer nesillere aktarılan genetik bilgiyi değiştirebilirler. Bu değişimler yararlı olabileceği gibi, ölümcül sonuçlara neden olabilecek kadar da zararlı olabilir. Bu yüzden, bütün canlı hücreleri, evrim süreçleri boyunca nesillere değişmeden aktarılması gereken DNA molekülünü koruma mekanizmaları geliştirmişlerdir.

<span class="mw-page-title-main">Denatürasyon</span>

Denatürasyon, protein veya nükleik asitlerin doğal yapısında mevcut olan sekonder, tersiyer ve kuaterner yapılarının bazı fiziksel ve kimyasal dış etkilerle bozularak primer yapılarına dönüşmeleri sürecidir. Canlı bir hücredeki proteinlerin denatüre olması, hücresel aktivitelerde bozulma ve belki de hücrenin ölümüyle sonuçlanır.

<span class="mw-page-title-main">Çevrim sonrası değişim</span> Biyolojik süreç

Çevrim sonrası değişim, bir proteinin çevriminden (translasyonundan) sonra kimyasal değişime uğramasıdır. Çoğu protein için bu değişimler, protein biyosentezinin son adımlarındandır.

<span class="mw-page-title-main">Genetik kod</span> genetik materyal içinde kodlanan bilginin proteinlere çevrildiği kurallar

Genetik kod, genetik malzemede kodlanmış bilginin canlı hücreler tarafından proteinlere çevrilmesini sağlayan kurallar kümesidir. Kod, kodon olarak adlandırılan üç nükleotitlik diziler ile amino asitler arasındaki ilişkiyi tanımlar. Bir nükleik asit dizisindeki üçlü kodon genelde tek bir amino asidi belirler. Genlerin çok büyük çoğunluğu aynı kodla şifrelendiği için, özellikle bu koda kuralsal veya standart genetik kod olarak değinilir, ama aslında pek çok kod varyantı vardır. Yani, standart genetik kod evrensel değildir. Örneğin, insanlarda, mitokondrilerdeki protein sentezi kuralsal koddan farklı bir genetik koda dayalıdır.

<span class="mw-page-title-main">Protein fosforilasyonu</span>

Protein fosforilasyonu, bir proteine bir fosfat grubu (PO4) eklenmesidir. Protein fosforilasyonu pek çok hücresel süreçte önemli bir rol oynar.

<span class="mw-page-title-main">Elastin</span>

Elastin fibroblast hücreleri tarafından üretilen yapısal bir proteindir. En çok bağ dokusunun hücrelerarası maddesinde yer almaktadır. Proteolizi yine fibroblastlar tarafından sağlanır.

<span class="mw-page-title-main">Alfa sarmal</span>

Protein ikincil yapısında yaygın bir motif olan alfa sarmal (α-sarmal), sağ-elli burgulu bir biçimdir, omurgadaki her bir N-H grubu, kendinden dört amino asit kalıntısı gerideki omurgadaki C=O grubuna bir hidrojen bağı verir. Bu ikincil yapı bazen klasik Pauling-Corey-Branson alfa sarmalı olarak da adlandırılır. Proteinlerin lokal yapı tipleri arasında α-sarmal, en düzenli olan, diziden öngörüsü yapılması en kolay olan ve ayrıca en yaygın olandır.

<span class="mw-page-title-main">Beta yaprak</span>

Proteinlerin ikincil yapısında β yaprak, alfa sarmaldan sonra en sık görülen biçimdir. Beta yapraklar birbirine en az iki veya üç hidrojen bağı ile yatay bağlanmış beta ipliklerden oluşur, bunlardan plili ve burkulmuş bir yaprak meydana getirir. Bir beta iplik 3 ila 10 amino asit uzunluğunda bir polipeptit zincirinden oluşur, polipeptir omurga neredeyse tamamen uzanık bir konformasyondadır. β yaprakların birleşmesinden kaynaklanan protein yığışımları (agregatlar) ve telcikler (fibriller), çeşitli hastalıkların oluşumunda rol oynar, bunların arasında Alzheimer gibi amiloidoz hastalıkları kayda değerdir.

Proteinler her organizmada bulunan önemli bir makromolekül sınıfıdır. Proteinler, 20 farklı tip L-α-amino asitten meydana gelen polimerlerdir. Amino asitler birbiriyle reaksiyona girdikten sonra meydana gelen polimerde bu amino asitlerden arta kalan birimlere amino asit kalıntısı denir. 40 kalıntıdan daha kısa olan zincirler için protein yerine genelde peptit terimi kullanılır. Biyolojik fonksiyonlarını yerine getirebilmek için proteinler uzay içinde belli bir biçim alacak şekilde katlanırlar. Bu katlanmayı yönlendiren güçler, protein atomları arasındaki hidrojen bağı, iyonik etkileşimler, van der Waals kuvvetleri ve hidrofobik istiflenme gibi, kovalent olmayan etkleşimlerdir. Proteinlerin işlevlerini moleküler düzeyde anlayabilmek için genelde onları üç boyutlu yapısının çözülmesi gerekir. Protein yapısını çözmek için X-ışını kristalografisi ve NMR spektroskopisi kullanılır, bunlar yapısal biyolojinin başlıca yöntemleri arasında yer alır.

<span class="mw-page-title-main">Protein birincil yapısı</span>

Peptit ve proteinlerin birincil yapısı, bu moleküllerin yapı birimleri olan amino asitlerin doğrusal sırası veya daha genel olarak, bir proteini oluşturan atomlar arasındaki kovalent bağların spesifikasyonudur.

Nörodejenerasyon, nöronların ölümü de dahil olmak üzere nöronların ilerleyen yapı veya fonksiyon kaybıdır. Nörodejeneratif süreçlerin bir sonucu olarak amiyotrofik lateral skleroz, Parkinson hastalığı, Alzheimer hastalığı, ölümcül ailesel uykusuzluk ve Huntington hastalığı gibi birçok nörodejeneratif hastalık ortaya çıkar. Bu tür hastalıklar tedavi edilemez ve nöron hücrelerinin ilerleyici dejenerasyonu ve / veya ölümüyle sonuçlanır. Araştırmalar ilerledikçe, bu hastalıkları hücre altı düzeyde birbirleriyle ilişkilendiren birçok benzerlik ortaya çıkmaktadır. Bu benzerliklerin keşfedilmesi, birçok hastalığı aynı anda iyileştirebilecek terapötik ilerlemeler için umut vermektedir. Atipik protein düzenekleri ve uyarılmış hücre ölümü dahil olmak üzere farklı nörodejeneratif bozukluklar arasında birçok paralellik vardır. Nörodejenerasyon, molekülerden sistemik olana kadar birçok farklı nöronal devre seviyesinde bulunabilir.

<span class="mw-page-title-main">Tuz köprüsü (protein ve supramoleküler)</span>

Kimyada, bir tuz köprüsü iki kovalent olmayan etkileşimin bir kombinasyonudur. İyon eşleştirme, kimyada, biyolojik sistemlerde, farklı materyallerde ve iyon çifti kromatografisi gibi birçok uygulamada en önemli kovalent olmayan kuvvetlerden biridir. Proteinlerin entropik olarak elverişsiz katlanmış konformasyonuna kararlılık sağlayan en yaygın faktördür. Kovalent olmayan etkileşimlerin nispeten zayıf etkileşimler olduğu bilinmesine rağmen, küçük stabilize edici etkileşimler bir araya geldiğinde konformer kararlılığına büyük derece bir atkı gerçekleştirebilirler. Sadece proteinlerde değil, tuz köprüleri aynı zamanda supramoleküler kimyada da bulunabilirler.

Metabotropik reseptör, hücre aktivitesini düzenlemek için bir dizi metabolik adımı başlatan membran reseptörü tipidir. Sinir sisteminde iki tür reseptör vardır:metabotropik ve iyonotropik reseptörler. İyonotropik reseptörler bir iyon kanalında porlar oluştururken, metabotropik reseptörler, G proteinleri gibi sinyal iletim mekanizmaları aracılığıyla dolaylı olarak iyon kanallarına bağlanır.

<span class="mw-page-title-main">Santral dogma (moleküler biyoloji)</span> Biyolojik bir sistem içindeki genetik bilgi akışının açıklanması

Moleküler biyolojinin santral (merkezi) dogması, biyolojik bir sistem içindeki genetik bilgi akışının bir açıklamasıdır. Orijinal anlamı bu olmasa da, genellikle "DNA RNA'yı, RNA proteini yapar" şeklinde ifade edilir İlk olarak 1957'de Francis Crick tarafından ifade edilmiş, 1958'de ise yayınlanmıştır.