İçeriğe atla

Potansiyel kuyusu

Potansiyel kuyusu, bir parçacığın bağlı olması durumunu modelleyen sistemdir. Tek boyutta uygulanan potansiyel,

şeklinde verilir. Burada parçacık görüldüğü üzere a genişlikli sonsuz kuyunun içine hapsolmuştur. Parçacık için Schrödinger denklemi yazılırsa:

denklemin çözümü ise olarak elde edilir. Bu, parçacığı kuyu içinde temsil eden dalga fonksiyonudur. Uygulanan potansiyel sonsuz olduğu için parçacığın dışarıda bulunması olasılığı sıfır olacağından, dışarıdaki dalga fonksiyonu olur. Sınırlarda iki dalga fonksiyonunun değerlerinin alacağı değerler birbirine eşit olmak zorunda olduğundan sınır koşulları ortaya çıkar.

denklemi ile karşılaştırılırsa

elde edilir. Böylece bağlı durumdaki parçacıkların enerjilerinin kuantalandığı gösterilmiş olur zira parçacığın enerji seviyeleri olmak üzere bu enerjinin tam katlarıdır.

Diğer bir deyişle kuyudaki parçacığın enerjisi iki enerji seviyesi arasındaki enerjiyi alamaz. Bu yüzden enerjide süreksizlik vardır, bu duruma enerjinin kuantalanması denir.

İlgili Araştırma Makaleleri

Schrödinger denklemi, bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adında bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini gösteren denklemi ilk bulan Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. 1900 yılında Max Planck'ın ortaya attığı "kuantum varsayımları"nın ardından, 1924'te ortaya atılan de Broglie varsayımı ve 1927'de ortaya atılan Heisenberg belirsizlik ilkesi bilim dünyasında yeni ufukların doğmasına sebep olmuştur. Bu gelişmeler Max Planck'ın kuantum varsayımları ve Schrödinger'in dalga mekaniği ile birleştirilerek kuantum mekaniğini ortaya çıkarmıştır.

<span class="mw-page-title-main">Tünel etkisi</span>

Serbest veya bağlı bir parçacığa enerjisinden büyük bir potansiyel engelinin uygulanması sonra engelin kaldırılması durumunda parçacığın sızabilme, diğer bir deyişle engelin içinden geçebilme olayıdır. Makro düzeyde bahsedilecek olunursa insanın duvarın içinden geçebilmesi durumu olarak tasvir edilebilir. Serbest parçacık için problemi tek boyutta ele alırsak, parçacığa etki eden potansiyel matematiksel olarak:

<span class="mw-page-title-main">Dalga fonksiyonu</span>

Kuantum fiziğinde dalga fonksiyonu izole bir kuantum sistemindeki kuantum durumunu betimler. Dalga fonksiyonu karmaşık değerli bir olasılık genliğidir ve sistem üzerindeki olası ölçümlerin olasılıklarının bulunmasını sağlar. Dalga fonksiyonu için en sık kullanılan sembol Yunan psi harfidir ψ ve Ψ.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

Klein-Gordon Denklemi, Schrödinger denkleminin bağıl/göreli (relativistik) olan versiyonudur ve atomaltı fizikte kendi ekseni etrafında dönmeyen parçacıkları tanımlamada kullanılır. Oskar Klein ve Walter Gordon tarafından bulunmuştur.

Aşağıdaki liste üstel fonksiyonların integrallerini içermektedir. İntegral fonksiyonlarının tüm bir listesi için lütfen İntegral tablosu sayfasına bakınız.

where

Aşağıdaki liste trigonometrik fonksiyonların integrallerini içermektedir. İntegral fonksiyonlarının tüm bir listesi için lütfen İntegral tablosu sayfasına bakınız.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Matematikte de Moivre formülü, 18. yüzyıl Fransız matematikçisi Abraham de Moivre anısına isimlendirilmiş ve herhangi bir karmaşık sayı için şu ifadenin geçerli olduğunu önerir:

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Kuantum mekaniğinde fermi enerjisi, genelde mutlak sıfır sıcaklığında etkileşimde olmayan fermiyonlardan oluşan bir kuantum sistemi içerisinde, en yüksek ve en düşük seviyede dolu vaziyetteki tek parçacık durumları arasındaki enerji farkını temsil eden bir konsepttir. Bir metalde en düşük dolu durum genelde iletken bandın altı olarak alınırken, bir fermi gazında bu durumun sıfır kinetik enerjisi olduğu kabul edilir.

Compton dalgaboyu bir parçacığın kuantum mekaniği özelliğidir. Compton dalgaboyu Arthur Compton tarafından elektronların foton saçılması olayı izah edilirken gösterilmiştir. Bir parçacığın Compton dalga boyu; enerjisi parçacığın durgun kütle enerjisine eşit olan fotonun dalgaboyuna eşittir. Parçacığın Compton dalgaboyu ( λ) şuna eşittir:

Kuantum harmonik salınıcı, klasik harmonik salınıcın benzeşiğidir. Rastgele seçilmiş potansiyeli denge noktası civarında harmonik potansiyele yakınsanabildiğinden nicem mekanğindeki en önemli model sistemlerden biridir. Dahası, nicem mekaniğinde kesin analitik çözümü olan çok az sistemden biridir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

Lamb kayması, adını Willis Lamb'den alan, hidrojen atomunun kuantum elektrodinamiğindeki 2S1/2 ve 2P1/2 enerji düzeyleri arasındaki küçük farklılıktır. Dirac denklemine göre, 2S1/2 ve 2P1/2 orbitalleri (yörüngeleri) aynı enerjiye sahip olmalıdır. Ancak, boşluktaki elektronlar arasındaki etkileşim, 2S1/2 ve 2P1/2 enerji düzeylerinde küçük bir enerji değişimine sebep olur. Lamb ve Robert Retherford bu değişimi 1947'de ölçmüşlerdir ve bu ölçüm, ıraksamayı açıklamak için tekrar normalleştirme teorisine teşvik edici bir unsur olmuştur. Bu, Julian Schwinger, Richard Feynman, Ernst Stueckelberg ve Sin-Itiro Tomonaga tarafından geliştirilmiş modern kuantum elektrodinamiğinin müjdecisiydi. Lamb, 1955 yılında Lamb kayması ile ilgili keşiflerinden ötürü Nobel Fizik Ödülü'nü kazandı.

Kuantum tüneli, parçacığın bariyer boyunca olan kuantum mekaniğini ifade eder. Bu, Güneş gibi yıldızlar dizisinde meydana gelen nükleer birleşmeler gibi birçok fiziksel olayda önemli bir rol oynar. Tünel diyotu, kuantum bilgisayarı ve taramalı tünelleme mikroskobu gibi modern araçlarda önemli uygulamaları vardır. Fiziksel olay olarak etkisi ve kabul görülürlüğü 20. yüzyılın başlarında ve ortalarına doğru geldiği tahmin ediliyor.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.