m > 0 ve z herhangi bir negatif tam sayıya eşit olmamalıdır. Bu gösterimde Hurwitz zeta fonksiyonu'nun içinde bulunduğu daha sağlam bir şekilde yazılımı
Karşıt olarak, Hurwitz zeta da değerler tam sayı olmak zorunda değildir. bazı seriler poligama fonksiyonunun çıkarılmasına izin verir. Schlömilch tarafından verilen,
. Bu sonuç Weierstrass faktörizasyon teoremidir.
Böylece gama fonksiyonunu tanımlayabiliriz:
Böylece, gama fonksiyonunun doğal logaritma'sının basitçe gösterimi:
Poligama fonksiyonunu bir toplam gösterimi sonuç olarak şeklinde verilebilir.
ve |z| < 1 yakınsak seridir. Burada, ζ Riemann zeta fonksiyonu'dur. Buradan Hurwitz zeta fonksiyonuna karşılık gelen Taylor serisi kolaylıkla elde edilebilir ; Bu seri rasyonel zeta serisi elde edebilmek için kullanılabilir.
Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions, (1964) Dover Publications, New York. ISBN 978-0-486-61272-0 . See section §6.4 2 Eylül 2009 tarihinde Wayback Machine sitesinde arşivlendi.
İlgili Araştırma Makaleleri
Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.
Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.
Totient sayılar teorisinde, bir tam sayının o sayıdan daha küçük ve o sayı ile aralarında asal olan sayma sayı sayısını belirten fonksiyondur. Genellikle Euler Totient ya da Euler'in Totienti olarak adlandırılan Totient, İsviçreli matematikçi Leonhard Euler tarafından yaratılmıştır. Totient fonksiyonu, Yunan harflerinden ile simgelendiği için Fi fonksiyonu olarak da anılabilir.
Gama fonksiyonu, matematikte faktöriyel fonksiyonunun karmaşık sayılar ve tam sayı olmayan reel sayılar için genellenmesi olan bir fonksiyondur. Г simgesiyle gösterilir.
Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.
Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer Xs parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:
Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.
Matematik'teki Dirichlet beta fonksiyonu özel fonksiyon'dur, aslında modifiye edilerek parantezlenmiş Riemann zeta fonksiyonu'nundan ibarettir. özel bir şekli Dirichlet L-fonksiyon'udur.
Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.
Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:
Matematik'te, trigama fonksiyonu, ψ1(z), olarak gösterilen ikincil poligama fonksiyonu'dur ve tanımı
.
Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.
Matematik'te ters gama fonksiyonu özel fonksiyon'dur.
Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,
Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla
Matematikte, a Neumann polinomali,Carl Neumann tarafından özel durum için sunulan, Bessel fonksiyonu terimleri içerisinde fonksiyonların 1/z açılımında kullanılan bir polinomdur.
Matematik'te, çok değişkenli Gama fonksiyonu, Γp(·), Gama fonksiyonu'nun genelleştirilmiş şeklidir. Çokdeğişkenli istatistik'te kullanılır.
Özel fonksiyonların önemli bir bölümünü oluşturan hipergeometrik fonksiyonlar matematik, fizik, mühendislik ve olasılıkta karşımıza çıkar.
Möbius fonksiyonu , 1832 yılında Alman matematikçi August Ferdinand Möbius tarafından ortaya atılan çarpımsal bir fonksiyondur. Temel ve analitik sayılar teorisi'nde çoğunlukla kullanılan fonksiyon, genellikle Möbius inversiyon formülü'nün bir parçası olarak görülür. Gian-Carlo Rota'nın 1960'lı yıllardaki çalışmaları sonucunda ile gösterilen Möbius fonksiyonunun genellemeleri kombinatoriğe tanıtılmıştır.
Aşağıdaki matematiksel seriler listesi, sonlu ve sonsuz toplamlar için formüller içerir. Toplamları değerlendirmek için diğer araçlarla birlikte kullanılabilir.
Burada , değerine sahip olduğu kabul edilir
, 'in kesirli kısmını ifade eder.
bir Bernoulli polinomudur.
bir Bernoulli sayısıdır ve burada; 'dir.
bir Euler sayısıdır.
Riemann zeta fonksiyonudur.
gama fonksiyonudur.
bir poligama fonksiyonudur.
bir polilogaritmadır.
binom katsayısıdır.
, 'in üstel'ini belirtir.
Bu sayfa, bu Vikipedi makalesine dayanmaktadır. Metin, CC BY-SA 4.0 lisansı altında mevcuttur; ek koşullar uygulanabilir. Görseller, videolar ve sesler kendi lisansları altında mevcuttur.