İçeriğe atla

Poisson denklemi

Matematikte, Poisson denklemi elektrostatik, makine mühendisliği ve teorik fizik'de geniş kullanım alanına sahip eliptik türdeki Kısmi diferansiyel denklemlerdir. Fransız matematikçi, geometrici ve fizikçi olan Siméon Denis Poisson'dan sonra isimlendirilmiştir. Poisson denklemi

Burada Laplasyene ve f ve φ ise Çokkatlıda gerçek veya Karmaşık-değerli fonksiyonlara karşılık gelmektedir. Çokkatlı öklid uzayı olduğu zaman, Laplasyen olarak belirtilir ve Poisson denklemi genel olarak

şeklinde yazılır. 3 boyutlu Kartezyen koordinat sisteminde

formunu alır. f sıfır olduğunda denklem;

halini alır. Bu Poisson denklemi, Green fonksiyonu kullanılarak çözülebilir; Green Fonksiyonunun Poisson denklemi için genel çözümünü Sönümlü Poisson denklemi başlığında verilmiştir. Nümerik çözüm için çok fazla değişik türden metot bulunmaktadır; rahatlatma metodu, yinelemeli algoritma sadece bir örnek...

Elektrostatik

Elektrostatiğin köşe taşlarından biri de Poisson denklemleri ile açıklanan problemlerin çözümünü ortaya atıp çözmektir. Verilmiş bir yük dağılımı için Elektriksel gerilimi bulmak için genelde kullandığımız yol bu olduğu için, φ'yi verilmiş f cinsinden bulmak önemli pratik bir sorundur.

Elektrostatikteki Poisson denkleminin türeyişi şu şekildedir. Uluslararası Birimler Sisteminin Öklid uzayında kullanıldığını var sayarsak ve differansiyel kontrol hacimdeki elektrik için Gauss Yasası ile başlarsak:

, Diverjansa
, elektrik deplasman alanına
, serbest yükün yük yoğunluğuna (yani dışarıdan getirilmiş yüklere) tekamül etmektedir.

Ortamın lineer, izotropik ve homojen olduğunu kabul edersek;

, ortamın geçirgenliği
, elektrik alan'dır.

Yerine koyma ve sadeleştirme işlemlerinden sonra;

elde ederiz. Değişken bir manyetik alan, olmadığı zaman, Faraday-Lenz yasası gereğince,

, Rotasyonele
ise zamana karşılık gelmektedir.

Elektrik Alanın Rotasyoneli sıfır olduğundan, o bir skaler elektrik potansiyel birler elektrik potansiyel olarak tanımlanır.

’yi yerine koyma metodu ile yok edersek, Poisson denkleminin bir formunu elde ederiz:

Potansiyel için Poisson denklemini çözmek yük yoğunluğu dağılımının bilinmesini gerektirir. Eğer yük yoğunluğu sıfır ise denklem Laplace denklemine dönüşür. Eğer ki yük yoğunluğu Boltzmann dağılımına tekamül ederse denklem Poisson-Boltzman denklemi halini alır. Poisson Boltzmann denklemi Debye-Hückel denkleminin gelişmesinde büyük rol oynar.

(Not: Yukarıdaki tartışma manyetik alanın zamanla değişmediğini kabullenim olarak alsa da aynı Coulomb ölçümlemesi kullanıldığı sürece zamanla gerçekten bir değişim olsa bile Poisson denklemi ortaya çıkar. Yalnız, genel bağlamda hesaplamak artık ’yi hesaplamak için yeterli değildir, çünkü ikincisi aynı zamanda manyetik vektör potansiyeline bağlıdır, ki bu da bağımsız olarak hesaplanmalıdır.)

Gauss yük yoğunluğunun potansiyeli

Eğer ki durgun küresel simetrik bir Gauss yük yoğunluğu var ise:

burada Q toplam yüktür. Dolayısıyla Poisson denkleminin çözümü φ (r),

,

burada şöyle gösterilir;

ki burada erf(x) hata fonksiyonuna tekamül etmektedir. Bu çözüm bariz bir biçimde yi hesaplayarak kontrol edilebilir. Dikkate alınmalı ki, tahmin edildiği şekilde σ den çok büyük bir r için erf fonksiyonu 1'e ve potansiyel noktasal yük potansiyeli φ (r), 'e yaklaşmaktadır. Ayrıca, erf fonksiyonu kendi argümanı arttıkça 1'e çok hızlı şekilde yaklaşmaktadır; pratikte r > 3σ için göreli hata binde birden küçüktür.

Ayrıca bakınız

  • Ayrık Poisson denklemi
  • Poisson–Boltzmann denklemi
  • Poisson denklemi için benzersizlik teoremi

Kaynakça

  • "Poisson Equation" (PDF). EqWorld: The World of Mathematical Equations. 25 Mayıs 2005 tarihinde kaynağından (PDF) arşivlendi. .
  • L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998. ISBN 0-8218-0772-2
  • A.D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

<span class="mw-page-title-main">Del işlemcisi</span>

Yöney analizinde del işlemcisi, 3 boyutlu Kartezyen koordinatlarda nabla işlemcisine denk gelir ve simgesiyle gösterilir.

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Elektrik alanı</span>

Elektriksel alan, kıvıl alan, elektrik alan veya elektrik alanı, elektriksel yükü veya manyetik alanı çevreleyen uzayın bir özelliği olup, içerisinde bulunan yüklü nesnelere elektriksel güç aracılığı ile etki eder. Kavram fiziğe Michael Faraday tarafından kazandırılmıştır.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

<span class="mw-page-title-main">Elektrostatik</span> durağan elektrik yüklerinin incelenmesi

Elektrostatik, duran veya çok yavaş hareket eden elektrik yüklerini inceleyen bir bilim dalıdır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

<span class="mw-page-title-main">Gauss yasası</span>

Fizikte Gauss'un akı teoremi olarak da bilinen Gauss yasası, elektrik yükünün ortaya çıkan elektrik alanına dağılımına ilişkilendiren matematiksel bir yasadır. Söz konusu yüzey küresel yüzey gibi bir hacmi çevreleyen kapalı bir yüzey olabilir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Elektromanyetik alan</span>

Elektromanyetik alan, Elektrik alanı'ndan ve Manyetik alan'dan meydana gelir.

<span class="mw-page-title-main">Klasik elektromanyetizma</span>

Klasik elektromanyetizm, klasik elektromıknatıslık ya da klasik elektrodinamik teorik fiziğin elektrik akımı ve elektriksel yükler arasındaki kuvvetlerin sonuçlarını inceleyen dalıdır. kuantum mekaniksel etkilerin ihmal edilebilir derecede küçük olmasını sağlayacak kadar büyük ölçütlü sistemler için elektromanyetik fenomenlerin mükemmel bir açıklamasını sunar.

Poisson-Boltzmann denklemi elektrolitler içindeki moleküller arasındaki elektrostatik etkileşimleri açıklayan diferansiyel denklemlere denir. Bu denklem aynı zamanda Gouy-Chapman çift tabaka (arayüzlü)'nın matematiksel temelidir; ilk olarak Gouy tarafından tasarlanmış daha sonra Chapman tarafından 1913te tamamlanmıştır. Bu denklem moleküler dinamikte ve biofizikte önemlidir, zira bu denklem, çözücünün yapılar üzerindeki etkilerine ve farklı iyonik güçlere sahip çözeltilerdeki proteinlerin, DNAnın, RNAnın ve diğer moleküllerin etkileşimlerine yaklaşım yapılmasında ve de zımni çözünmeyi modellemede kullanılmaktadır. Genellikle Poisson-Boltmann denklemini kompleks sistelerde çözmek zordur, fakat birçok bilgisayar programı onu numerik olarak çözmek için geliştirilmiştir.

Perdeleme, hareketli yük taşıyıcılarının varlığından ortaya çıkan elektrik alanının sönümünü ifade eder. Metaller ve yarıiletkenlerdeki iletim elektronları ve iyonize olmuş gazlar(klasik plazma) gibi yük taşıyıcı akışkanlarda gözlemlenir. Elektriksel olarak yüklenmiş parçacıklardan oluşan bir akışkanda, her çift parçacık Coulomb kuvveti ile etkileşir,

.

Görüntü yük yöntemi, elektrostatikte kullanılan bir soru çözüm tekniğidir. İsimlendirmenin kökeni problemdeki sınır koşullarını bazı sanal yükler ile değiştirme yönteminden gelir.

<span class="mw-page-title-main">Yer değiştirme akımı</span>

Elektromanyetizmada yer değiştirme akımı elektrik yer değiştirme alanının değişim oranıyla tanımlanan bir niceliktir. Yer değiştirme akımının birimi akım yoğunluğu cinsinden ifade edilir. Yer değiştirme akımı gerçek akımlar gibi manyetik alan üretir. Yer değiştirme akımı hareketli yüklerin yarattığı bir elektrik akımı değil; zamana bağlı olarak değişim gösteren elektrik alanıdır. Maddelerde, atomun içerisinde bulunan yüklerin küçük hareketlerinin de buna bir katkısı vardır ki buna dielektrik polarizasyon denir.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

Ewald toplamı, ismini Paul Peter Ewald'dan alır, periyodik sistemlerin, özellikle elektrostatik enerjilerin, etkileşim enerjilerini hesaplayan bir yöntemdir. Ewald toplamı Poisson toplam formülünde gerçek uzaydaki etkileşim enerjilerinin Fourier uzayındaki denk bir toplam ile değiştirilmiş toplam formülünün özel bir halidir. Bu yöntemin avantajı gerçek uzaydaki etkileşimler uzun mesafeli olduğunda Fourier uzayındaki toplamın hızlı yakınsıyor olmasıdır. Elektrostatik enerjiler kısa ve uzun mesafeli etkileşimlerden oluştukları için en verimli hesaplama etkileşim potansiyeli gerçek uzayda kısa mesafeli etkileşim toplamı ve Fourier uzayında uzun mesafeli etkileşim toplamı olarak iki parçaya ayrıldığında gerçekleşir.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

Fizikte Einstein ilişkisi; 1904'te William Sutherland'in, 1905'te Albert Einstein'ın ve 1906'da Marian Smoluchowski'nin Brown hareketi üzerine yaptıkları çalışmalarında bağımsız olarak ortaya koydukları önceden beklenmedik bir bağlantıdır. Denklemin daha genel biçimi: