İçeriğe atla

Poincaré yinelenme teoremi

Matematikteki Poincaré yinelenme teoremine göre, dinamikleri hacmini koruyan ve sınırlı mekansal hacimle sınırlanan bir sistem, yeterli süre sonra, baştaki durumuyla aynı olacak veya ona çok yakın bir biçimde yinelenecektir.

Teorem adını, 1890 yılında geliştiren Henri Poincaré'den alır.

Kesin Formülasyon

Sıradan bir diferansiyel denklem tarafından tanımlanan herhangi bir dinamik sistem, kendi üzerinde faz uzayını haritalayan bir akış haritası belirler. Faz uzayındaki bir kümenin hacmi akış altında değişmez ise sistemin hacim koruyucu olduğu söylenir. Örneğin, tüm Hamilton sistemleri Liouville teoremi nedeniyle hacim koruyucudur. O halde teorem şudur: Eğer akış hacmi koruyorsa ve sadece sınırlı yörüngelere sahipse, bulunan her açık kümesi için o kümeyle sonsuz sıklıkta kesişen bir küme daha vardır.[1]

Kuantum mekaniksel versiyon

Ayrık enerji öz durumlu zamandan bağımsız kuantum mekanik sistemler için benzer bir teorem geçerlidir. Her biri için and T'den daha büyük bir zaman vardır , öyle ki , nerede t anında sistemin durum vektörünü gösterir.[2][3][4]

İspatın temel unsurları aşağıdaki gibidir. Sistem zamanla şunlara göre gelişir:

burada enerji öz değerleri (doğal birimleri kullanıyoruz, bu nedenle ) ve enerji öz durumlarıdır. Zamandaki durum vektörünün farkının Kare normu ve zaman sıfır, olarak yazılabilir:

Toplamı T'den bağımsız bir n = N de kesebiliriz, çünkü

N'yi artırarak keyfi olarak küçük yapılabilir; , başlangıç durumunun kare normu olan 1'e yakınsar.

Sonlu toplam

aşağıdaki yapıya göre, t zamanının belirli seçimleri için keyfi olarak küçük yapılabilir. Keyfi bir seçim yapın ve sonra tam sayılar olacak şekilde T'yi seçin bu tatmin edici

,

tüm sayılar için . Bu özel seçim için T,

bu nedenle,

.

Durum vektörü böylece keyfi olarak başlangıç durumuna yakın bir şekilde döndürür .

Ayrıca bakınız

Kaynakça

  1. ^ Barreira, Luis (2006). Zambrini, Jean-Claude (Ed.). Poincaré recurrence: Old and new. XIVth International Congress on Mathematical Physics. World Scientific. ss. 415-422. doi:10.1142/9789812704016_0039. ISBN 978-981-256-201-2. 
  2. ^ Bocchieri, P.; Loinger, A. (1957). "Quantum Recurrence Theorem". Phys. Rev. 107 (2): 337-338. Bibcode:1957PhRv..107..337B. doi:10.1103/PhysRev.107.337. 
  3. ^ Percival, I.C. (1961). "Almost Periodicity and the Quantal H theorem". J. Math. Phys. 2 (2): 235-239. Bibcode:1961JMP.....2..235P. doi:10.1063/1.1703705. 
  4. ^ Schulman, L. S. (1978). "Note on the quantum recurrence theorem". Phys. Rev. A. 18 (5): 2379-2380. Bibcode:1978PhRvA..18.2379S. doi:10.1103/PhysRevA.18.2379. 

İlgili Araştırma Makaleleri

Belirsizlik ilkesi, Heisenberg belirsizlik ilkesi ya da Belirlenemezlik ilkesi olarak da bilinir.

<span class="mw-page-title-main">Dalga fonksiyonu</span>

Kuantum fiziğinde dalga fonksiyonu izole bir kuantum sistemindeki kuantum durumunu betimler. Dalga fonksiyonu karmaşık değerli bir olasılık genliğidir ve sistem üzerindeki olası ölçümlerin olasılıklarının bulunmasını sağlar. Dalga fonksiyonu için en sık kullanılan sembol Yunan psi harfidir ψ ve Ψ.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

<span class="mw-page-title-main">Skellam dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Skellam dağılımı bir ayrık olasılık dağılım tipidir. Skellam dağılımı iki tane beklenen değerleri ve olan Poisson dağılımı gösteren rassal değişken ve arasında bulunan fark olan nin gösterdiği olasılık dağılımdır.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Poligama fonksiyonu</span>

Matematik'te, poligama fonksiyonu' eşitliğin soludur ve türevin kuvvetine m konulduğunda eşitliğin sağ tarafındaki gama fonksiyonu'nun logaritma'sının (m + 1). türevi olarak tanımlanır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

<span class="mw-page-title-main">Akım fonksiyonu</span>

Akım Fonksiyonu, eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz akışlar için tanımlanır. Akış hızı bileşenleri, skaler akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı. Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.

<span class="mw-page-title-main">Feynman diyagramı</span> parçacıklar bozunum geçirdiğinde veya diğer parçacıklarla etkileşime girdiğinde en temel düzeyde ne olduğunu gösteren uzay zaman şeması

Teorik fizikte Feynman diagramları, bir Feynman diyagramının davranışını düzenleyen matematiksel ifadelerin resimsel sunumlar katılarak diyagram tarafından açıklandığı gibi atomaltı parçacıklarların davranışları gösterilmiştir. Bu şemalar bunları bulan adınadır, Amerikan fizikçisi Richard Feynman Nobel Ödülü kazandı ve 1948 yılında tanıttı. Atomaltı parçacıkların ilişkileri sezgisel anlamak karışık ve zor olabilir ve Feynman diagramları oldukça gizemli soyut formülün basit bir gösterimine izin verir. David Kaiser yazdı ki, "yüzyılın ortasından bu yana, bu diagramlar teorik fizikçiler için giderek zorlaşan kritik hesaplamalar uygulamasına yardım araçlarıdır," ve "Feynman diagramları Teorik fizikte her yönüyle neredeyse devrimdir.". kuantum alan teorisi diyagramların ilk uygulamasıdır, ayrıca, katı-hal teorisi gibi diğer alanlardada kullanılabilir.

Dolanıklık, kuantum mekaniğine özgü bir olgudur. Kuantum fiziğine göre iki benzer parçacık birbiriyle eşzamanlılığa sahiptir. Bu parçacıklar ayrı yerlerde birbirinden eşzamanlı olarak etkilenirler. İki elektron parçası ışık yılına yakın uzaklıkta olsa dahi birbirlerini etkileyebilirler. Bu sayede birbirinden ışık yılına yakın bir uzaklıkta olan bir elektron kendi çevresi etrafında sağa dönerken diğer bir elektron parçası sola dönecektir.

Dalga işlevinin çöküşü, kuantum dilinde, gözlemcinin de katılımcı olması durumu.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Schrödinger gösterimleri, fizikte, kuantum mekaniğinin bir formülasyonudur. Öyle ki durum vektörleri zaman içinde değişir, ancak operatörler zamana göre sabit kalır. Bu Heisenberg gösteriminden ve etkileşim tasvirden farklıdır çünkü Heisenberg gösteriminde durum vektörleri zaman içinde durumlarını sabit tutarken gözlemlenebilir operatörler değişir ve etkileşim tasvirinde durum vektörleri ve gözlenebilir operatörlerin ikisi de zaman içinde değişir. Schrödinger ve Heisenberg gösterimleri aktif ve pasif dönüşümler gibi birbirleriyle ilişkilidir ve aynı ölçüm istatistiklerine sahiptirler.

Lamb kayması, adını Willis Lamb'den alan, hidrojen atomunun kuantum elektrodinamiğindeki 2S1/2 ve 2P1/2 enerji düzeyleri arasındaki küçük farklılıktır. Dirac denklemine göre, 2S1/2 ve 2P1/2 orbitalleri (yörüngeleri) aynı enerjiye sahip olmalıdır. Ancak, boşluktaki elektronlar arasındaki etkileşim, 2S1/2 ve 2P1/2 enerji düzeylerinde küçük bir enerji değişimine sebep olur. Lamb ve Robert Retherford bu değişimi 1947'de ölçmüşlerdir ve bu ölçüm, ıraksamayı açıklamak için tekrar normalleştirme teorisine teşvik edici bir unsur olmuştur. Bu, Julian Schwinger, Richard Feynman, Ernst Stueckelberg ve Sin-Itiro Tomonaga tarafından geliştirilmiş modern kuantum elektrodinamiğinin müjdecisiydi. Lamb, 1955 yılında Lamb kayması ile ilgili keşiflerinden ötürü Nobel Fizik Ödülü'nü kazandı.

Kuantum Şekil Dinamiği yeni yeni çalışılan bir araştırma konusudur. Hedefi şekillerin kuantum mekaniğini, şekil dinamiği arka planında kuantum alanları ve şekil dinamiğinin kuantizasyonunu anlamaktır.

<span class="mw-page-title-main">Çevre açı</span>

Geometride, çevre açı, çember üzerinde iki sekant (kesen) çizgisi kesiştiğinde bir çember üzerinde oluşan açıdır. Çember üzerindeki bir nokta ile çember üzerinde verilen diğer iki noktanın oluşturduğu açı olarak da tanımlanabilir.

<span class="mw-page-title-main">Fermi'nin etkileşimi</span>

Parçacık fiziğinde, Fermi etkileşimi beta bozunmasının 1933'te Enrico Fermi tarafından önerilmiş bir açıklamasıdır. Teori, dört fermiyonun birbiriyle direkt etkileştiğini varsayar. Bu etkileşim bir nötronun bir elektron, bir nötrino ve bir protonla doğrudan bağlanmasıyla bir nötronun beta bozunmasını açıklar.

Möbius fonksiyonu , 1832 yılında Alman matematikçi August Ferdinand Möbius tarafından ortaya atılan çarpımsal bir fonksiyondur. Temel ve analitik sayılar teorisi'nde çoğunlukla kullanılan fonksiyon, genellikle Möbius inversiyon formülü'nün bir parçası olarak görülür. Gian-Carlo Rota'nın 1960'lı yıllardaki çalışmaları sonucunda ile gösterilen Möbius fonksiyonunun genellemeleri kombinatoriğe tanıtılmıştır.