İçeriğe atla

Plazma aktüatörü

Plazma aktüatörleri halihazırda aerodinamik akış kontrolü için geliştirilen bir aktüatör tipidir. Plazma aktüatör ionocraft ile aynı yolla kuvvet uygular.

Bu aktüatörlerin çalışması elektrotlardan geçen yüksek voltajlı alternatif akım uygulamaları tarafından asimetrik elektrot çifti arasındaki düşük sıcaklık plazmasının formasyonu dayanır. Sonuç olarak, elektrotların etrafını saran hava hava molekülleri iyonize olmuştur ve elektrik alanı tarafından ivmelenmiştir.[1]

Plazma aktüatörünün deşarj etme parıltısı

Giriş

Plazma aktüatörlerinin atmoferik basınç altında üretilmesi güçlü elektrik alanı ve elektrik arkı sırasında ortaya çıkan ısı tarafından yüklenen kütle kuvveti, kuruluşun ve yerleştirilmenin basitliği gibi akış kontrolleri için umut vadeder.  Özellikle, Roth (2003)[2] havanın atmosfer basıncında yeterli miktarlarda korlaşmış yük boşaltım plazmasının üretimi korlaşmış yük boşaltım plazmasının son icadı akış kontrolü performansının arttırılmasına yardım eder.

Plazma aktüatörü tarafından indüklenmiş yerel akış hızı

Alternatif akımın ya da doğru akımın enerji kaynakları ya da  mikrodalga mikro boşaltımı plazma aktuatörlerinin farklı biçimleri için kullanılabilir.[3] Dielektrik maddenin yük boşaltım bariyeri için alternatif akım enerji kaynağının dizaynının şematiği burada örnek olarak verilmiştir. Plazma aktüatörlerinin performansı enerji girdisi ve yalıtkan madde tarafından belirlenir ve sonra metal oksit yarı iletkenli alan etkili transistörün (MOSFET) ya da yalıtılmış iki kutuplu kapı transistörünün (IGBT) niteliği tarafından sınırlandırılır.

Enerji kaynağının E-tipi devreyi çalıştırması 

Dalga biçiminin çalışması daha iyi bir etkinleştirme için daha uygun bir hale getirilebilir. Fakat, sinüzoidal dalga biçimi enerji kaynağının yapının kolaylığı için daha çok tercih edilebilir. Bir diğer getiri göreceli olarak daha az elektromanyetik girişimdir. Atım genişlik modülasyonu anında ayarlanan etkinleştirme gücü olarak benimsenebilir.[4]

Plazma güç giriş darbe genişlik modülasyonu
HER plazma ünitesinin bir yapılandırması
HER plazma ünitesinin bir yapılandırması

Kapsüllenen elektrodun yönlendirilmesi ve kapsüllenen elektrodun yalıtkan maddenin katmanına doğru dağıtılması tarafında yalıtkan yük boşaltımı bariyer plazma aktüatörünün (DBD) performansının değiştiği gösterildi. İlk kapsüllenmiş elektrodun yalıtkan maddenin yüzeyine daha yakın yerleştirilmesi, verilen voltajdan kaynaklanan hızdan daha yüksek bir indüklenmiş hıza sebep olur.  Buna ek olarak, sığ başlangıç elektrotlu aktüatörler akışının içindeki daha çok mekanik gücü ve daha çok momentumu bilgilendirebilir.[5]

Ne kadar fonlamanın yatırım yapıldığı fark etmeksizin ve çeşitli özel isteklerin sayının indüklenmiş yüksek hızı maksimumdur. Plazma aktüatörü tarafından atmosferik basınç durumunda herhangi bir mekanik amplifikatörün yardımı olmaksızın indüklenmiş ortalama hız hala 10 m/s den azdır.[6]

Sıcaklık etkisi

Plazma aktüatörleri ile donatılmış gerçek hayat hava araçları ile uğraşırken ısının etkisini hesaba katmak önemlidir. Uçuş sırasında karşılaşılan dış katmandaki sıcaklık değişikliklerinin aktüatörün performansında kötü etkisi olabilir. Bu sabit bir zirveden zirveye voltajı için bulunabilir. Aktüatör tarafından üretilen maksimum hız yalıtkan maddenin yüzeyinin sıcaklığına doğrudan bağlıdır. Buluntular aktüatörün sıcaklığı değiştirilerek performansın korunabileceğini hatta ve hatta farklı çevre koşullarına çevrilebileceğini önerir. Yalıtkan maddenin sıcaklığının yükselmesi, harcanan enerjiden biraz daha çok iken momentumun akısının yükselmesi ile plazma aktüatörünün performansını yükseltebilir.[7]

Akış kontrolü uygulamaları

Plazma aktifleştirmesinin bazı güncel uygulamaları bölgesel hale getirilmiş ark filament plazma aktüatörleri[8] kullanılarak yüksek hızda akış kontrolü, yalıtkan bariyer yük boşaltımı kullanılarak düşük hızda akış kontrolü[9] ve kayan yük boşaltımı içerir.[10] Plazma aktüatörlerinin bugünkü araştırması ana olarak üç yöne odaklanmıştır: (1) plazma aktüatörlerinin çeşitli dizaynları; (2) akış kontrol uygulamaları; (3)  plazma aktifleştirmesi altında akış uygulamarının yönlü kontrol modeli. Ek olarak, olayın fiziksel iç yüzünün görülmesini sağlayan yeni deneysel ve sayısal metotlar[11] geliştiriliyor.

Girdap üreticisi

Plazma aktüatörü yerel akış hızının yönünde girdap düzleminden aşağı akıntının artmasını sağlayacak küçük sapmalara neden olur. Sonuç olarak, plazma aktüatörleri girdap üreticisi gibi hareket edebilir. Plazma aktüatörleri ve geleneksel girdap üreticileri arasındaki fark hiç hareketli mekanik parçanın olmaması ya da aerodinamik yüzeyde hiç delik açılmamasıdır. Bu plazma aktüatörünün önemli faydasını gösterir.

Plazma indüklenmiş akış alanı

Aktif ses kontrolü

Aktif ses kontrolü normalde ses geçersiz kılma hoperlörünün aynı genlikte fakat orijinal ses ile ters fazlı ses dalgaları yollayan ses geçersiz kılmayı simgeler. Fakat, plazma ile aktif ses kontolü farklı bir stratejileri benimser. İlk strateji plazma yüzeyinden geçerken azaltılabilen ses basıncının keşfini kullanır. Daha geniş alanlarda kullanılan ikinci strateji akışın indüklenmiş sesinden sorumlu olan akış alanını plazma kullanarak aktif bir şekilde baskılamaktır. Tona uygun sesin[6] ve geniş bantlı sesin[9] dikkatlice dizayn edilmiş plazma aktüatörü tarafından aktif bir şekilde azaltılabileceği ispat edilmiştir.

Süpersonik ve hipersonik akış kontrolü

Plazma hipersonik akış kontrolüne uygulanmıştır.[12] İlk olarak, plazma çok düşük atmosfer basıncında, yüksek irtifada ve yüksek yüzey sıcaklığında hipersonik taşıtlar için çok daha kolay üretilebilir. İkinci olarak, klasik aerodinamik yüzey bu durum için çok küçük aktivasyona sahip olur .

Plazma aktüatöre aktif uçuş cihazları olarak ilgi mekanik parçalarının olmaması, hafif ve yüksek tepki frekanslı olmalarından dolayı hızla büyüyor.  Yalıtkan yük boşaltma bariyer plazma aktüatörünün ayırt edici özelliği düzensiz şok tüpü tarafından üretilen akışa maruz kaldığında incelenmiştir.  Araştırma plazma tarafından etkilenenin sadece şok tüpünün dışındaki kayma tabakası olmadığını fakat şok geçişinin önündekinden ve yüksek akış hızının arkasındakinden plazmanın özelliklerinin çokça etkilendiğini gösterir.[13]

Uçuş kontrolü

Plazma aktüatörleri uçak kanadına uçuş yüksekliğini ve sonra uçuş yörüngesini kontrol etmek için takılabilir. Klasik dümende ki elverişsiz dizayn, mekanik bakım çabaları ve hidrolik iletim sistemi böylelikle korunabilir. Ödenmesi gereken bedel ilk olarak elektromanyetik uyumluluk kuralına uygun bir yüksek voltaj güç elektrik sistemi dizayn edilmelidir. Bunun sonucu olarak, akış kontrolüne ek olarak, plazma aktüatörleri yüksek seviye uçuş kontrolünde potansiyeli sabit tutar.

Diğer yandan, tüm uçuş kontrol stratejisi plazma aktüatörlerin nitelikleri hesaba katılarak tekrar gözden geçirilmelidir. DBD plazma aktüatörü ile çalışan ilkel dönüş kontrol sistemleri şekilde gösterilmiştir.[14]

Dümensiz uçuş kontrolü için NACA 0015 uçak kanatlarına uygulanmış plazma aktüatörleri

Plazma aktüatörlerinin uçak kanatlarının iki tarafına birden uygulandığı görülebilir. Dönüş kontrol dönüş açısının geri bildirimine göre plazma aktüatörünün aktif hale getirilmesi ile kontrol edilebilir. Kontrol metotlarının çeşitli geri bildirimlerine çalıştıktan sonra, bang-bang kontrol metodu plazma aktüatörlerine ile çalışan dönüş kontrol sistemlerinin dizaynı için seçilmiştir. Bunun nedeni bang-bang kontrol zamana uygun olması ve atmosferik ve elektriksel durumlardan kolayca etkilenen plazma etkinleştirmesinden etkilenmemesidir.

Modelleme

Çeşitli sayısal modeller akış kontrolünde plazma aktüatörlerinin benzetimi için önerildi. En pahalıdan en ucuza hesaplanan giderlere göre aşağıda listelendiler.

  • Monte carlo yöntemine ek olarak partikül-hücre;
  • Navier-Stokes denklemleri ile birleştirilen elektrik modellemesi;
  • Stokes denklemleri ile birleştirilen katlanmış eleman yöntemi[15]
  • Plazma etkinleşmesini uyarmak için vekil modeli.[11][16]

Plazma aktüatörlerinin en önemli potansiyeli sıvıları ve elektriği birleştirme yeteneğidir.  Modern kapalı döngü kontrol sistemleri ve bunu takip eden teorik modellemeler göreceli klasik aerodinamik bilimine uygulanabilir. Akış kontrolünde plazma aktifleştirmesi için kontrol yönelimli model gedik akış kontrol durumları için önerildi.[17]

Ayrıca bakınız

  • İyon iticisi
  • Elektrostatik sıvı hızlandırıcı
  • Serpantin geometri plazma aktüatörü
  • Kanatsız Elektromanyetik Hava Aracı
  • Dielektrik Bariyer Deşarj
  • (Fizik) plazma listesi makaleler

Kaynakça

  1. ^ "James W. Gregory". 1 Mayıs 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 18 Mayıs 2016. 
  2. ^ Roth, J. R. (2003).
  3. ^ E. Moreau. (2007), Airflow control by non-thermal plasma actuators, J. Phys.
  4. ^ Huang, X., Chan, S., and Zhang, X. (2007).
  5. ^ Rasool Erfani, Zare-Behtash H., Hale C., Kontis K. Development of DBD plasma actuators: The double encapsulated electrode.
  6. ^ a b Huang, X., and Zhang, X. (2008).
  7. ^ Rasool Erfani, Zare-Behtash H., Kontis K. Plasma actuator: Influence of dielectric surface temperature.
  8. ^ Samimy, M., Kim, J. H., Kastner, J., Adamovich, I., and Utkin, Y. (2007).
  9. ^ a b Huang, X., Zhang, X., and Li, Y. (2010) Broadband Flow-Induced Sound Control using Plasma Actuators, Journal of Sound and Vibration, Vol 329, No 13, pp. 2477–2489.
  10. ^ Li, Y., Zhang, X. and Huang, X. (2010).
  11. ^ a b Ed Peers, Xun Huang, and Zhaokai Ma, (2010).
  12. ^ Shang, J.S. et al. (2005) Mechanisms of plasma actuators for hypersonic flow control.
  13. ^ Rasool Erfani, Zare-Behtash H., Kontis K. Influence of Shock Wave Propagation on Dielectric Barrier Discharge Plasma Actuator Performance.
  14. ^ Wei, Q. K., Niu, Z. G., Chen, B. and Huang, X.*, "Bang-Bang Control Applied in Airfoil Roll Control with Plasma Actuators", AIAA Journal of Aircraft, 2012, accepted (arXiv:1204.2491)
  15. ^ Young-Chang Cho, Wei Shyy. (2011).
  16. ^ Rasool Erfani, Tohid Erfani, Kontis K. and Utyuzhnikov S. Optimisation of multiple encapsulated electrode plasma actuator.
  17. ^ Xun Huang, Sammie Chan, Xin Zhang and Steve Gabriel. (2008).

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kondansatör</span> Ani yük boşalması amacıyla kullanılan devre elemanı

Kondansatör ya da sığaç veya yoğunlaç, elektronların kutuplanıp elektriksel yükü elektrik alanın içerisinde depolayabilme özelliklerinden faydalanılarak bir yalıtkan malzemenin iki metal tabaka arasına yerleştirilmesiyle oluşturulan temel elektrik ve elektronik devre elemanı. Piyasada kapasite, kapasitör, sığaç gibi isimlerle anılan kondansatörler, 18. yüzyılda icat edilip geliştirilmeye başlanmış ve günümüzde teknolojinin ilerlemesinde büyük önemi olan elektrik-elektronik dallarının en vazgeçilmez unsurlarından biri olmuştur. Elektrik yükü depolama, reaktif güç kontrolü, bilgi kaybı engelleme, AC/DC arasında dönüşüm yapmada kullanılır ve tüm entegre elektronik devrelerin vazgeçilmez elemanıdır. Kondansatörlerin karakteristikleri olarak;

<span class="mw-page-title-main">Maddenin hâlleri</span> maddenin farklı aşamalarında yer alan farklı hâlleri

Bir fizik terimi olarak maddenin hâli, maddenin aldığı farklı fazlardır. Günlük hayatta maddenin dört farklı hâl aldığı görülür. Bunlar; katı, sıvı, gaz ve plazmadır. Maddenin başka hâlleri de bilinir. Örneğin; Bose-Einstein yoğunlaşması ve nötron-dejeneje maddesi. Fakat bu hâller olağanüstü durumlarda gerçekleşir, çok soğuk ya da çok yoğun maddelerde. Maddenin diğer hâllerininde, örneğin quark-gluon plazmalar, mümkün olduğuna inanılır fakat şu an sadece teorik olarak bilinir. Tarihsel olarak, maddenin özelliklerindeki niteleyici farklılıklara dayanarak ayrım yapılır. Katı hâldeki madde bileşen parçaları ile bir arada tutulur ve böylece sabit hacim ve şeklini korur. Sıvı hâldeki madde hacmini korur fakat bulunduğu kabın şeklini alır. Bu parçalar bir arada tutulur ama hareketleri serbesttir. Gaz hâlindeki madde ise hem hacim olarak hem de şekil olarak bulunduğu kaba ayak uydurur.Bu parçalar ne beraber ne de sabit bir yerde tutulur. Maddenin plazma hâli ise, nötr atomlarda dahil, hacim ve şekil olarak tutarsızdır. Serbestçe ilerleyen önemli sayıda iyon ve elektron içerirler. Plazma, evrende maddenin en yaygın şekilde görülen hâlidir.

<span class="mw-page-title-main">Yarı iletken</span> Normal şartlar altında yalıtkan iken belirli fiziksel etkilerde iletken duruma geçen madde

Yarı iletken üzerine yapılan mekanik işin etkisiyle iletken özelliği kazanabilen, normal şartlar altında yalıtkan olan maddelerdir.

<span class="mw-page-title-main">Uçak</span> Motorlu hava taşıtı

Uçak veya tayyare; hava akımının başta kanatlar olmak üzere kanat profilli parçaların alt ve üst yüzeyleri arasında basınç farkı oluşturması sayesinde havada tutunarak yükselebilen, uçma özellikli motorlu bir hava gemisi ve hava taşıtıdır. Pistonlu ya da jet motorlu, sabit kanatlı ve havadan ağır pek çok hava taşıtı uçak kategorisine dahildir. Günümüzde en temel uçak tipleri, yolcu uçağı, savaş uçağı, kargo uçağı olarak bilinirken, farklı coğrafi şartlara göre özelleştirmiş uçaklar da mevcuttur.

<span class="mw-page-title-main">Elektrik akımı</span> elektrik yükü akışı

Elektrik akımı, elektriksel akım veya cereyan, en kısa tanımıyla elektriksel yük taşıyan parçacıkların hareketidir. Bu yük genellikle elektrik devrelerindeki kabloların içerisinde hareket eden elektronlar tarafından taşınmaktadır. Ayrıca, elektrolit içerisindeki iyonlar tarafından ya da plazma içindeki hem iyonlar hem de elektronlar tarafından taşınabilmektedir.

<span class="mw-page-title-main">Bina yalıtımı</span>

Bina yalıtımı ya da bina izolasyonu, herhangi bir yalıtım malzemesi kullanılarak, ortamdan dışarı veya dışarıdan ortama olan enerji akışının indirgenmesidir. Yalıtım malzemelerinin (yalıtkan) çeşitli tipleri vardır:

<span class="mw-page-title-main">Plazma</span> gaz haldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal reaksiyonun kontrollü etkileşim süreci

Plazma, gaz hâldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal tepkimenin kontrollü etkileşim sürecine verilen genel ad. Daha kolay bir tanımla; atomun elektronlardan arınmış hâlidir.

<span class="mw-page-title-main">Karakutu</span> Uçuş sırasındaki verileri kaydeden bir cihaz

Karakutu veya uçuş kayıt cihazı, uçuş esnasında uçaktaki belli başlı verileri kaydetmeye yarayan araçtır. Hava olayları ve kazalarının soruşturulmasında kolaylık sağlaması amacıyla hava taşıtlarında bulunmaktadır. Çeşitli özelliklerine göre üç sınıfa ayrılır:

<span class="mw-page-title-main">Aerodinamik</span> Fizik terimi ve bilim dalı

Aerodinamik, hareket eden katı kütlelerin havayla etkileşimlerini inceleyen bilim dalıdır. Aerodinamik sözcüğü Yunancadan gelmiş olup bu bilim dalı havanın hareketi ile ilgilidir. Parçalı olarak katı bir cisim ile irtibata geçmiş olması, havanın hareketi ve uçağın kanadı gibi, buna örnek olarak gösterilebilir. Aerodinamik akışkan dinamiği ve gaz dinamiğinin bir alt dalıdır ve aerodinamiğin birçok bakış açısı, teorisi bu alanlarda ortaktır. Aerodinamik genellikle gaz dinamiği için kullanılır; gaz dinamiğinin aerodinamikten farkı, tüm gazlar için çalışması ve aerodinamik gibi yalnızca hava ile sınırlanmamış olmasıdır.

<span class="mw-page-title-main">Saçtırma biriktirme</span>

İnce film kaplamalarda, buhar kaynağı olarak, genellikle saçtırma yöntemi kullanılmaktadır. Diğer yöntemlere göre birçok avantaj sunan bu yöntemde, katı malzeme pozitif iyonlarla bombardıman edilerek, atomlar yüzeyden kopartılır. Kaplanacak olan malzeme, hızlandırılmış iyonlar gibi enerjik parçacıklarla bombardıman edilirse, saçılan atomlar substrat (alttaş) yüzeyinde film tabakası oluştururlar.

<span class="mw-page-title-main">Scramjet</span> jet motor türü

Scramjet bir ramjet çeşidi olup farklı olarak supersonik yanma odasına sahiptir. Havanın sıkıştırılarak alındığı, yakıtın yakıldığı yanma odası ve egzozun giriş hızından daha hızlı ayrıldığı lüleye (nozzle) sahiptir. Ticari jet motorları havanın motor içine alınıp sıkıştırılması için kompresör kullanır, daha sonra sprey halindeki yakıt sıkıştırılmış havayla birlikte ateşlenerek geriye doğru gider ve thrust oluşturur. Scramjet havayı sıkıştırmak için uçağın hızını kullanır, yani çok az hareketli parçaya ihtiyaç duymaktadır.

<span class="mw-page-title-main">Kritik Mach sayısı</span>

Aerodinamikte, bir hava taşıtının kritik Mach sayısı kanattaki küçük bir bölge üzerindeki akışın ses hızına ulaştığı en küçük mach sayısıdır.

<span class="mw-page-title-main">Termistör</span>

Termistör veya ısıl direnç, sıcaklık ile iletkenliği değişen bir tür dirençtir. Sıcaklık ile direnci değişen maddelere, term (ısıl), rezistör (direnç) kelimelerinin birleşimi olan termistör denir. Termistörler, sıcaklık sensörleri, kendiliğinden sıfırlamalı aşırı akım koruyucuları ve kendiliğinden ayarlamalı ısıtma elementlerinde kullanılır

<span class="mw-page-title-main">Statik elektrik</span>

Statik elektrik, bir maddenin içerisindeki ya da yüzeyindeki elektrik yüklerinin oransızlığı olarak tanımlanmaktadır. Yük, elektrik akımı ya da elektriksel deşarj tarafından uzağa hareket etmeye başlayacağı zamana kadar aynen kalır. Statik elektrik, elektrik telleri ya da diğer iletkenler boyunca akan ve enerji aktaran elektrik akımının tam aksi olarak adlandırılmaktadır.

<span class="mw-page-title-main">Gezegenler arası ortam</span>

Gezegenler arası ortam, Güneş Sistemi’ni dolduran, gezegenler, asteroidler ve kuyrukluyıldızlar gibi Güneş Sistemi cisimleri içerisinden geçen materyaldir.

<span class="mw-page-title-main">Yalıtkan (elektrik)</span>

Elektriksel yalıtkan, elektrik yükünün serbestçe akamadığı maddelerdir. Bu yüzden elektrik alanının etkisi altında kaldıklarında, elektrik akımını iletmeleri zordur. Mükemmel yalıtkanlar bulunmamaktadır. Ancak, cam kâğıt ve polietilen tabanlı vesaire gibi yüksek özdirence sahip bazı maddeler çok iyi elektrik yalıtkanlarıdır. Daha düşük özdirençleri olan maddeler hala elektrik kablolarında kullanılmak için yeterlidir. Kauçuk benzeri polimerler ve birçok plastik bu gruba dâhildir. Bu tür malzemeler düşükten orta dereceli gerilimleri güvenli bir şekilde yalıtılmasına hizmet eder.

Termonükleer füzyon, çok yüksek sıcaklık kullanılarak nükleer füzyonu başarmanın bir yoludur. Termonükleer füzyonun kontrol edilebilen ve edilemeyen olarak iki formu vardır. Kontrol edilemeyen : kontrol edilemeyecek büyük bir enerjiye sahiptir bunlara termonükleer silahlardan hidrojen bombası örnektir. Kontrol edilebilenler ise yapıcı amaçlar için çevrede bulunan füzyon reaksiyonlarıdır. Bu metin ikincisine odaklı yazılmıştır.

Plazma Odak Makinesi (DPF) elektromanyetik ivme ve basınç kullanarak, nükleer füzyon yapmaya ve nötron ve röntgenlerin emisyon yaptırmaya yetecek kadar sıcak ve yoğun kısa ömürlü bir plazma üretmekte kullanılır. Plazmanın elektromanyetik basıncına pinch adı verilir. Bu birbirinden bağımsız olarak 1954'te N.V. Filippov ve 1960 başlarında J.W. Mather tarafından icat edilmiştir. Plazmanın odağı pinch yapmadan plazmoid formunda plazma enjekte eden yüksek kuvvetli plazma silahına (HIPGD) (ya da sadece plazma silahı) benzerlik gösterir.

<span class="mw-page-title-main">Elektriksel özdirenç ve iletkenlik</span> Wikimedia anlam ayrımı sayfası

Elektriksel öz direnç, belirli bir malzemenin elektrik akımının akışına karşı nicelleştiren bir özelliktir. Düşük bir direnç kolaylıkla elektrik akımının akışını sağlayan bir malzeme anlamına gelir. Karşıt değeri, elektrik akımının geçiş kolaylığını ölçen elektriksel iletkenliktir. Elektriksel direnç, mekanik sürtünme ile kavramsal paralelliklere sahiptir. Elektriksel direncin SI birimi ohm, elektriksel iletkenliğin birimi ise siemens (birim) (S)'dir.

<span class="mw-page-title-main">Deforme olabilen ayna</span>

Deforme olabilen aynalar (DM), dalga cephesi kontrol edilmesi ve optik hataların düzeltilmesi amacıyla yüzeyi deforme olabilen aynalardır. Deforme olabilen aynalar, uyarlanabilir optik sistemlerinde dalga cephesi sensörleri ve gerçek zamanlı kontrol sistemleriyle birlikte kullanılır.