İçeriğe atla

Planck parçacığı

Fizikçi Max Planck'tan sonra adlandırılan Planck parçacığı, Compton dalga boyu ile Schwarzschild yarıçapının eşit olduğu parçacığın kara delik kadar sıkıştırılması varsayımı ile elde edilmiştir.[1] Kütlesi yaklaşık olarak Planck kütlesine eşittir ve Compton dalga boyu ile Schwarzschild yarıçapı yaklaşık olarak Planck uzunluğu kadardır.[2] Planck kütlesi ve Planck uzunluğunu tanımlamak için bazen Planck parçacıkları ifadesi kullanılır.[3] Bu parçacıklar Planck çağında evrenin oluşmasındaki bazı modellerde rol oynadı.[4]

Örneğin bir proton ile karşılaştırılırsa Planck parçacığı aşırı derecede küçük (parçacığın yarıçapı Planck uzunluğuna eşittir, bu da proton çapının yaklaşık 10−20 katıdır) ve ağırdır (Planck kütlesi, proton kütlesinin 1019 katıdır).[5]

Parçacığın Hawking ışınımında yok olduğu düşünülüyor.

Türetilmesi

Uygun tanımı için çeşitli görüşler olmasına rağmen bir Planck parçacığı içi en yaygın tanım, Compton dalga boyunun Schwarzschild yarıçapına eşit olduğudur. Bu şöyle ifade edilir:

Burada bir parçacığın kütlesi:

Bu kütle Planck kütlesinden kat daha büyüktür. Bu da bir Planck parçacığının Planck'ın birim kütlesinden 1,772 kat daha ağır olduğu anlamına gelir.

Parçacığın yarıçapı Compton dalga boyuna eşit olur:

Boyutları

Yukarıdaki türetimleri kullanarak h, G ve c fiziksel sabitlerini ifade edebililir ve parçacığın kütlesi ile yarıçapını fiziksel değerlerini tanımlayabiliriz. Bu yarıçapın bir küre biçiminde olduğu varsayarak ayrıca parçacığın hacmini ve yoğunluğunu da tanımlayabiliriz.

Table 1: Bir Planck parçacığının fiziksel boyutları
Parametre Boyut SI birimlerindeki değeri
Kütle M 3,85763×10-8 kg
Yarıçap L 5,72947×10-35 m
Volume L37,87827×10-103 m3
Yoğunluk M L−34,89655×1094 kg m-3

Yukarıdaki boyutların bilinen hiçbir fiziksel madde veya varlıkla ilgili olmadığına dikkat edin.

Ayrıca bakınız

Kaynakça

  1. ^ Michel M. Deza; Elena Deza. Encyclopedia of Distances 1 Temmuz 2014 tarihinde Wayback Machine sitesinde arşivlendi.. Springer; 1 June 2009. ISBN 978-3-642-00233-5. p. 433 1 Temmuz 2014 tarihinde Wayback Machine sitesinde arşivlendi..
  2. ^ ""Light element synthesis in Planck fireballs" - SpringerLink". 16 Şubat 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Şubat 2013. 
  3. ^ B. Roy Frieden; Robert A. Gatenby. Exploratory data analysis using Fisher information 1 Temmuz 2014 tarihinde Wayback Machine sitesinde arşivlendi.. Springer; 2007. ISBN 978-1-84628-506-6. p. 163 1 Temmuz 2014 tarihinde Wayback Machine sitesinde arşivlendi..
  4. ^ Harrison, Edward Robert (2000), Cosmology: the science of the universe, Cambridge University Press, ISBN 978-0-521-66148-5  p. 424[]
  5. ^ Harrison 2000, s. 478.

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Foton</span>

Foton, Modern Fizik'te ışık, radyo dalgaları gibi elektromanyetik radyasyonu içeren Elektromanyetik Alan kuantumu yani ışığın temel birimidir. Ayrıca, Elektromanyetik Kuvvet'lerde kuvvet taşıyan, kütlesiz temel parçacıktır. Parçacık terimi; genelde kütlesi olan veya ne kadar küçük olursa olsun bir cismi var olan anlamıyla kullanılır. Ancak, fotonlar için kullanılırken "en küçük enerji yumağı"nı temsil eden bir birimi ifade eder. Fotonlar Bozon sınıfına aittir. Kütlesiz oldukları için boşluktaki hızı 299.792.458 m/s dir.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

Madde dalgaları veya de Broglie dalgaları, maddenin dalga-parçacık ikiliğini yansıtan kavramdır. Kuram 1924'te, Louis de Broglie tarafından doktora tezinde önerilmiştir. De Broglie denklemleri dalga boyunun parçacığın momentumuyla ters orantılı olduğunu gösterir ve ayrıca de Broglie dalga boyu diye isimlendirilir. Ayrıca madde dalgalarının tekrarsıklığı, de Broglie tarafından türetildiği gibi, parçacığın toplam enerjisi E'ye – kinetik enerjisinin ve potansiyel enerjisinin toplamı – doğru orantılıdır.

Schwarzschild yarıçapı, her kütle ile ilişkilendirilen karakteristik bir yarıçaptır. Verilen bir kütle bu yarıçapa kadar sıkıştırılırsa bilinen hiçbir kuvvet onun uzay zaman tekilliğine çökmesini engelleyemez. Schwarzschild yarıçapı terimi fizikte ve astronomide özellikle de kütleçekim ve genel görelilik teorilerinde kullanılır.

Fizikte Planck uzunluğu (ℓP), Planck birimleri olarak bilinen doğal birimler sisteminde uzunluk birimidir ve vakumda ışık hızı ile Planck zamanı çarpımına eşittir.

<span class="mw-page-title-main">Compton saçılması</span>

Compton olayı, yüksek enerjili X ışınlarının fotonu ile karbon atomunun serbest elektronunun çarpıştırılması sonucu elektronun ve fotonun şekildeki gibi saçılması olayıdır.

Fizikte Planck enerjisi (EP), Planck birimleri olarak bilinen doğal birimler sisteminde enerji birimidir.

Fizikte Planck kütlesi (mP), Planck birimleri olarak bilinen doğal birimler sisteminde kütle birimidir.

Planck sıcaklığı (TP), Planck birimleri olarak bilinen doğal birimler sisteminde sıcaklık birimidir.

Planck kuvveti (FP), Planck birimleri olarak bilinen doğal birimler sisteminde kuvvet birimidir.

Planck birimleri, aşağıdaki listede de gösterilen gibi SI tarafından kabul edilen ve yedi temel birimden türetilen fiziksel ölçü birimleridir. Bu yedi fiziksel sabit, eğer türetilen herhangi bir birimin sayısal değeri olarak kullanılırsa değeri 1 birim olur. Planck birimlerinin kuramsal fizikte derin anlamları vardır. Bunlar, fizik yasasının cebirsel ifadelerini, çok kolay biçimde basitleştirirler. Kuantum kütleçekimi gibi birleşik kuramların incelenmesi özel rol oynarlar.

Fizikte doğal birimler, evrensel fizik sabitleri kullanılarak elde edilen ölçü birimleridir. Örneğin temel yük (e), elektriksel yük ve ışık hızı (c), hız için kullanılan doğal birimlerdir. Herhangi bir evrensel fizik sabitini 1 birim olarak normalleştirmek için yalnızca evrensel ölçü sistemi kullanılır. Her ne kadar bu şekilde basitleştirme avantaj gibi görülüyor olsa bile, fizik yasalarının matematiksel ifadesinden elde edilen bu sabitlerin anlaşılması biraz zor olabilir.

<span class="mw-page-title-main">Kütleçekimsel dalga</span>

Kütleçekimsel dalga veya kütleçekim dalgası (KÇD), fizikte uzayzaman eğriliğinde oluşan kırışıklık olup kaynağından dışarıya doğru bir dalga olarak yayılır. Albert Einstein tarafından 1915'te varlığı öngörülen bu dalgalar, Genel Relativite Teorisi'ne dayanarak kütleçekimsel ışıma şeklinde enerji naklederler. Tespit edilebilir kütleçekimsel dalga kaynakları, beyaz cüce, nötron yıldızı veya kara delik içeren çift yıldız sistemleri olabilir. Kütleçekimsel dalgaların varlığı, kendisiyle fiziksel etkileşimlerin yayılma hızını sınırlama kavramını getiren ve genel relativite ile ilgili Lorentz değişmezliğinin muhtemel bir sonucudur. Bu dalgaların, etkileşim hızını sonsuz olarak kabul eden Newton'un Çekim Teorisi'nde varlığı mümkün değildir.

Compton dalgaboyu bir parçacığın kuantum mekaniği özelliğidir. Compton dalgaboyu Arthur Compton tarafından elektronların foton saçılması olayı izah edilirken gösterilmiştir. Bir parçacığın Compton dalga boyu; enerjisi parçacığın durgun kütle enerjisine eşit olan fotonun dalgaboyuna eşittir. Parçacığın Compton dalgaboyu ( λ) şuna eşittir:

Bohr yarıçapı bir fizik sabitidir. Hidrojen atomunun, protonu ve elektronu arasındaki mesafeye eşittir. Bohr yarıçapının, bir atomda Bohr atom modeli içindeki rolünden dolayı adlandırılmak istenmiştir. Fakat bu olay Niels Bohr'dan sonra gerçekleşmiştir. Uluslararası birimler sisteminde Bohr yarıçapı:

 : serbest uzayın elektriksel geçirgenliği
 : Planck sabiti
 : elektronun kütlesi
 : elemanter yük
 : ışık hızı sabiti
 : ince yapı sabiti

Einstein'ın genel görelelik teorisine göre Schwarzschild metriği Einstein'ın alan denklemlerinin çözümüyle ortaya çıkmıştır. Küresel bir kütlenin dışındaki elektik yükü, angular momentumu ve evrensel kozmolojik sabiti sıfır varsayılan yerçekimsel alanı tarif eder. Bu çözüm yıldızlar veya gezegenler gibi düşük hızlarda dönen cisimler için oldukça yararlıdır. Dünya ve Güneş de bu cisimlere örnek olarak verilebilir. Bu çözüm ismini çözümünü 1916 yılında yayınlayan Karl Schwarzschild'den almıştır.

Kuantum tüneli, parçacığın bariyer boyunca olan kuantum mekaniğini ifade eder. Bu, Güneş gibi yıldızlar dizisinde meydana gelen nükleer birleşmeler gibi birçok fiziksel olayda önemli bir rol oynar. Tünel diyotu, kuantum bilgisayarı ve taramalı tünelleme mikroskobu gibi modern araçlarda önemli uygulamaları vardır. Fiziksel olay olarak etkisi ve kabul görülürlüğü 20. yüzyılın başlarında ve ortalarına doğru geldiği tahmin ediliyor.

<span class="mw-page-title-main">Negatif kütle</span>

Negatif kütle, teorik fizikte normal kütlenin zıt işaretlisi olan varsayımsal madde kavramıdır, örneğin -2 kg. Bu durum bir ya da daha fazla enerji koşulunu ihlal eder ve negatif kütle için çekimin kuvvet olması gerektiği ve pozitif yönlü ivmeye sahip olması gerektiği anlaşmazlığından kaynaklanan bazı garip özellikler gösterir. Negatif kütle, solucan deliği inşa etme gibi bazı kuramsal teorilerde kullanılır. Egzotik maddeye benzeyen en yakın bilinen örnek Casimir etkisi tarafından üretilen sözde negatif basınç yoğunluğunun alanıdır. Genel izafiyet teorisinin kütleçekimini ve pozitif, negatif enerji yüklerinin hareket yasasını iyi tanımlamasına rağmen negatif kütle dolayısıyla başka temel kuvvetleri içermez. Diğer yandan, standart model, temel parçacıkları ve diğer temel kuvvetleri iyi tanımlamasına ve kütleçekimi kütle merkezini ve eylemsizliği derinlemesine içermesine rağmen kütleçekimini içermez. Negatif kütlenin kavramının daha iyi anlaşılabilmesi için kütleçekimini açık bir şekilde ifade eden modelle birlikte diğer temel kuvvetler de gerekebilir.

<span class="mw-page-title-main">Renormalizasyon (fizik)</span> fizik

Kuantum alan teorisinde, renormalizasyon veya yeniden normalleştirme, pertürbatif genişlemede hesaplanan miktarda ortaya çıkan sonsuzlukların bir dizi teknik kullanılarak giderilmesi süreci.

Fizikte, bir elektronun açısal momentumunun, kütlesinin ve yükünün değeri aynı olan bir karadelik olsaydı bu karadeliğin elektronun diğer özelliklerini de paylaşacağını bahseden spekülatif bir hipotez vardır. En önemlisi, Brandon Carter 1968'de böyle bir nesnenin manyetik momentinin bir elektronunkiyle eşleşeceğini gösterdi. Bu ilginç çünkü özel göreliliği göz ardı eden ve elektronu dönen küçük bir yük küresi olarak ele alan hesaplamalar, deneysel değerden kabaca iki kat daha küçük bir manyetik moment veriyor.