İçeriğe atla

Planck kütlesi

Fizikte Planck kütlesi (mP), Planck birimleri olarak bilinen doğal birimler sisteminde kütle birimidir.

Planck kütlesi şöyle ifade edilir:

1,2209×1019 GeV/c2 = 2,17651(13)×10-8 kg, (veya 21,7651 µg).[1]

Burada c : bir vakumdaki ışık hızı, G : yerçekimi sabiti; ve ħ : Planck sabitidir.

Parçacık fiziğinde ve fiziksel evrenbiliminde azalan Planck kütlesi sık kullanılır ve değeri;

4,341×10-9 kg = 2.435 × 1018 GeV/c2'dir.

Genel görelilikte, eklenen faktörü denklemlerin sayısını basitleştirir.

Planck kütlesi adı, Max Planck onuruna verildi. Birimi, kuantum etkisindeki yaklaşık ölçeği ölçer. Burada kütleçekimden dolayı önem arz eder. Kuantum etkileri normalde, Planck sabiti büyüklüğü ile ifade edilir.

Anlamı

Planck kütlesi, Schwarzschild yarıçapının Planck uzunluğuna eşit olduğu ufacık kara delik varsayımına göre Planck parçacığının yaklaşık kütlesidir.

Diğer tüm temel Planck birimleri ve türetilen Planck birimlerinin çoğunun aksine, Planck kütlesi insanın az veya çok hayal edebileceği bir ölçeğe sahiptir. Planck kütlesi, geleneksel olarak bir pirenin kütlesine yaklaşık olarak eşittir denilir, fakat aslında bir pire yumurtasının kütlesine yaklaşık eşit olduğunu söylemek daha uygun olur.

Planck kütlesi, kütle mekaniğini açıklamak için, genel görelilik ve kuantum mekaniği esasları aynı anda önemli olduğunda kuantum kütleçekimi için özel bir tanımla idealleştirilir.

Türetilmesi

Boyut analizi

Planck kütlesinin formülü boyut analizi ile türetilir. Bu yaklaşımda ħ, c ve G üç fiziksel sabitinde başlanır ve kütlenin birimi olarak büyüklüğü elde etmeye çalışılır. Formülün şöyle olduğu kabul edilir;

Burada , her bir taraftaki boyutlarla eşleşen sabitler olarak tanımlanır. L, uzunluk; T, zaman; M kütle sembolüdür ve bazı x fiziksel niceliklerin boyutları için "[x]" yazılır. Böylece ifadeler şöyle olur:

.

Buradan,

Eğer kütlenin boyutlarını elde etmek için, şu denklemler kullanılır:

.

Bu sistemin çözümü şöyledir:

Böylece Planck kütlesi şöyle olur:

Eşleşme sabitinin elenmesi

Planck kütlesinin eşdeğeri, ayrı iki kütle arasındaki kütleçekim potansiyel enerjisi şöyle ifade edilir.

Burada; mP, ayrı kütle; r, r açısal dalga boyundaki bir fotonun enerjisidir ve oranları bire eşittir. Burada sadeleştirme yapılırsa;

Bu denklemde, enerji çarpı uzunluk değerine eşittir. Bu eşitliğe Planck birimleri türetilmesinde sıkça rastlanır. İki nicelik kendi oranları olan bire eşittir. Buradan, denklemin sisteme uygun olması için kütleyi elemek kolaydır:

İkinci denklemde Planck kütleleri yerine elektron kütlesi kullanıldığında denklem artık bütünlük arz etmez ve kütleçekim eşleşme sabiti olur.

Compton dalga boyu ve Schwarzschild yarıçapı

Compton dalga boyu ile Schwarzschild yarıçapının yaklaşık olarak eşit olduğu varsayılarak Planck kütlesi türetilebilir.[2] Kaba ifade ile, kuantum etkilerinin bir parçacık için önem arz etmeye başladığı anda parçacığın şiddeti Compton dalga boyundan daha küçük olur. Schwarzschild yarıçapı, kara delik kadar olan bir kütlenin yarıçapıdır. Eğer bir parçacık yeteri kadar kütleye sahip olursa, parçacığın Compton dalga boyu Schwarzschild yarıçapına yaklaşık olarak eşit olur ve dinamiği kuantum kütleçekimine etki eder. Bu kütle yaklaşık olarak Planck kütlesine eşit olur.

Compton dalga boyu ifadesi şöyledir:

Schwarzschild yarıçapı ifadesi de şöyledir:

Burada kütleler eşitlenirse:

Bu tam olarak Planck kütlesi değildir: faktörü daha büyüktür. Yine de bu deneysel bir türetilmiştir ve yalnızca uygun büyüklüğü elde etmek için kullanılır.

Ayrıca bakınız

Kaynakça

  1. ^ CODATA 2010: value in GeV 29 Eylül 2012 tarihinde Wayback Machine sitesinde arşivlendi., value in kg 13 Eylül 2015 tarihinde Wayback Machine sitesinde arşivlendi.
  2. ^ The riddle of gravitation 16 Temmuz 2017 tarihinde Wayback Machine sitesinde arşivlendi. by Peter Gabriel Bergmann, page x

Kaynakça

  1. Sivaram C. WHAT IS SPECIAL ABOUT THE PLANCK MASS? PDF
  2. Johnstone Stoney, Phil. Trans. Roy. Soc. 11, (1881)

Dış bağlantılar

İlgili Araştırma Makaleleri

Schrödinger denklemi, bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adında bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini gösteren denklemi ilk bulan Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. 1900 yılında Max Planck'ın ortaya attığı "kuantum varsayımları"nın ardından, 1924'te ortaya atılan de Broglie varsayımı ve 1927'de ortaya atılan Heisenberg belirsizlik ilkesi bilim dünyasında yeni ufukların doğmasına sebep olmuştur. Bu gelişmeler Max Planck'ın kuantum varsayımları ve Schrödinger'in dalga mekaniği ile birleştirilerek kuantum mekaniğini ortaya çıkarmıştır.

<span class="mw-page-title-main">Kütle çekimi sabiti</span> nesneler arasındaki yerçekimi kuvvetini kütleleri ve mesafeleriyle ilişkilendiren fiziksel sabit

Kütleçekim sabiti MKS sisteminde yaklaşık 6,67x10ˉ¹¹ değerine sahiptir ve de G harfi ile gösterilir.

Fizikte Planck uzunluğu (ℓP), Planck birimleri olarak bilinen doğal birimler sisteminde uzunluk birimidir ve vakumda ışık hızı ile Planck zamanı çarpımına eşittir.

Fizikte Planck enerjisi (EP), Planck birimleri olarak bilinen doğal birimler sisteminde enerji birimidir.

Fizikçi Max Planck'tan sonra adlandırılan Planck parçacığı, Compton dalga boyu ile Schwarzschild yarıçapının eşit olduğu parçacığın kara delik kadar sıkıştırılması varsayımı ile elde edilmiştir. Kütlesi yaklaşık olarak Planck kütlesine eşittir ve Compton dalga boyu ile Schwarzschild yarıçapı yaklaşık olarak Planck uzunluğu kadardır. Planck kütlesi ve Planck uzunluğunu tanımlamak için bazen Planck parçacıkları ifadesi kullanılır. Bu parçacıklar Planck çağında evrenin oluşmasındaki bazı modellerde rol oynadı.

Fizikte Planck yükü, Planck birimleri olarak bilinen doğal birimler sisteminde elektriksel yük birimidir ve boyutsuz fiziksel sabit olarak tanımlanır.

Planck sıcaklığı (TP), Planck birimleri olarak bilinen doğal birimler sisteminde sıcaklık birimidir.

Planck kuvveti (FP), Planck birimleri olarak bilinen doğal birimler sisteminde kuvvet birimidir.

<span class="mw-page-title-main">Planck basıncı</span>

Planck basıncı (pP), Planck birimleri olarak bilinen doğal birimler sisteminde basınç birimidir.

Planck gerilimi (VP), Planck birimleri olarak bilinen doğal birimler sisteminde gerilim birimidir.

Planck momentumu, Planck birimleri olarak bilinen doğal birimler sisteminde momentum birimidir. Aslında Planck momentumuna ait özel sembol yoktur. Fakat ile gösterilir. , Planck kütlesi ve , bir vakumdaki ışık hızıdır.

Planck birimleri, aşağıdaki listede de gösterilen gibi SI tarafından kabul edilen ve yedi temel birimden türetilen fiziksel ölçü birimleridir. Bu yedi fiziksel sabit, eğer türetilen herhangi bir birimin sayısal değeri olarak kullanılırsa değeri 1 birim olur. Planck birimlerinin kuramsal fizikte derin anlamları vardır. Bunlar, fizik yasasının cebirsel ifadelerini, çok kolay biçimde basitleştirirler. Kuantum kütleçekimi gibi birleşik kuramların incelenmesi özel rol oynarlar.

Fizikte doğal birimler, evrensel fizik sabitleri kullanılarak elde edilen ölçü birimleridir. Örneğin temel yük (e), elektriksel yük ve ışık hızı (c), hız için kullanılan doğal birimlerdir. Herhangi bir evrensel fizik sabitini 1 birim olarak normalleştirmek için yalnızca evrensel ölçü sistemi kullanılır. Her ne kadar bu şekilde basitleştirme avantaj gibi görülüyor olsa bile, fizik yasalarının matematiksel ifadesinden elde edilen bu sabitlerin anlaşılması biraz zor olabilir.

Kuantum mekaniğinde fermi enerjisi, genelde mutlak sıfır sıcaklığında etkileşimde olmayan fermiyonlardan oluşan bir kuantum sistemi içerisinde, en yüksek ve en düşük seviyede dolu vaziyetteki tek parçacık durumları arasındaki enerji farkını temsil eden bir konsepttir. Bir metalde en düşük dolu durum genelde iletken bandın altı olarak alınırken, bir fermi gazında bu durumun sıfır kinetik enerjisi olduğu kabul edilir.

Compton dalgaboyu bir parçacığın kuantum mekaniği özelliğidir. Compton dalgaboyu Arthur Compton tarafından elektronların foton saçılması olayı izah edilirken gösterilmiştir. Bir parçacığın Compton dalga boyu; enerjisi parçacığın durgun kütle enerjisine eşit olan fotonun dalgaboyuna eşittir. Parçacığın Compton dalgaboyu ( λ) şuna eşittir:

Bohr yarıçapı bir fizik sabitidir. Hidrojen atomunun, protonu ve elektronu arasındaki mesafeye eşittir. Bohr yarıçapının, bir atomda Bohr atom modeli içindeki rolünden dolayı adlandırılmak istenmiştir. Fakat bu olay Niels Bohr'dan sonra gerçekleşmiştir. Uluslararası birimler sisteminde Bohr yarıçapı:

 : serbest uzayın elektriksel geçirgenliği
 : Planck sabiti
 : elektronun kütlesi
 : elemanter yük
 : ışık hızı sabiti
 : ince yapı sabiti

Modern kuantum (nicem) mekaniğinden önce gelen eski kuantum (nicem) kuramı, 1900 ile 1925 yılları arasında elde edilen sonuçların birikimidir. Bu kuramın, klasik mekaniğin ilk doğrulamaları olduğunu günümüzde anladığımız bu kuram, ilk zamanlar tamamlanmış veya istikrarlı değildi. Bohr modeli çalışmaların odak noktasıydı. Eski kuantum döneminde, Arnold Sommerfield, uzay nicemlenimi olarak anılan açısal momentumun (devinimin) z-bileşkesinde nicemlenim yaparak önemli katkılarda bulunmuştur. Bu katkı, electron yörüngelerinin dairesel yerine eliptik olduğunu ortaya çıkarmıştır ve kuantum çakışıklık kavramını ortaya atmıştır. Bu kuram, electron dönüsü hariç Zeeman etkisini açıklamaktadır.

<span class="mw-page-title-main">Negatif kütle</span>

Negatif kütle, teorik fizikte normal kütlenin zıt işaretlisi olan varsayımsal madde kavramıdır, örneğin -2 kg. Bu durum bir ya da daha fazla enerji koşulunu ihlal eder ve negatif kütle için çekimin kuvvet olması gerektiği ve pozitif yönlü ivmeye sahip olması gerektiği anlaşmazlığından kaynaklanan bazı garip özellikler gösterir. Negatif kütle, solucan deliği inşa etme gibi bazı kuramsal teorilerde kullanılır. Egzotik maddeye benzeyen en yakın bilinen örnek Casimir etkisi tarafından üretilen sözde negatif basınç yoğunluğunun alanıdır. Genel izafiyet teorisinin kütleçekimini ve pozitif, negatif enerji yüklerinin hareket yasasını iyi tanımlamasına rağmen negatif kütle dolayısıyla başka temel kuvvetleri içermez. Diğer yandan, standart model, temel parçacıkları ve diğer temel kuvvetleri iyi tanımlamasına ve kütleçekimi kütle merkezini ve eylemsizliği derinlemesine içermesine rağmen kütleçekimini içermez. Negatif kütlenin kavramının daha iyi anlaşılabilmesi için kütleçekimini açık bir şekilde ifade eden modelle birlikte diğer temel kuvvetler de gerekebilir.

<span class="mw-page-title-main">Renormalizasyon (fizik)</span> fizik

Kuantum alan teorisinde, renormalizasyon veya yeniden normalleştirme, pertürbatif genişlemede hesaplanan miktarda ortaya çıkan sonsuzlukların bir dizi teknik kullanılarak giderilmesi süreci.

Fizikte, bir elektronun açısal momentumunun, kütlesinin ve yükünün değeri aynı olan bir karadelik olsaydı bu karadeliğin elektronun diğer özelliklerini de paylaşacağını bahseden spekülatif bir hipotez vardır. En önemlisi, Brandon Carter 1968'de böyle bir nesnenin manyetik momentinin bir elektronunkiyle eşleşeceğini gösterdi. Bu ilginç çünkü özel göreliliği göz ardı eden ve elektronu dönen küçük bir yük küresi olarak ele alan hesaplamalar, deneysel değerden kabaca iki kat daha küçük bir manyetik moment veriyor.