İçeriğe atla

Plütonyum-239

Plütonyum-239 (239Pu veya Pu-239 ), plütonyumun bir izotopudur. Plütonyum-239, nükleer silah üretiminde kullanılan birincil fisil izotoptur ancak uranyum-235 de bu amaç için kullanılır. Plütonyum-239 aynı zamanda uranyum-235 ve uranyum-233 ile birlikte termal spektrumlu nükleer reaktörlerde yakıt olarak kullanılabilen üç ana izotoptan biridir. Plütonyum-239'un yarı ömrü 24.110 yıldır.[1]

Nükleer özellikleri

Plütonyum-239'un nükleer özellikleri ve yüksek oranda zenginleştirilmiş silah sınıfı uranyum-235'ten daha ucuza daha fazla miktarlarda neredeyse saf 239Pu üretme kabiliyeti, nükleer silahlarda ve nükleer santrallerde kullanılmasına yol açtı. Bir nükleer santralin reaktöründe bir uranyum-235 atomunun fisyonu iki ila üç nötron üretir ve bu nötronlar plütonyum-239 ve diğer izotopları üretmek için uranyum-238 tarafından emilebilir. Plütonyum-239 ayrıca bir reaktördeki uranyum-235 ile birlikte nötronları ve fisyonu da emebilir.

Tüm yaygın nükleer yakıtlar arasında 239Pu en küçük kritik kütleye sahiptir. Küresel şekildeki sıkıştırılmamış kritik kütle yaklaşık 11 kg (24,2 lbs) ve 10,2 cm (4") çapındadır. Uygun tetikleyiciler, nötron reflektörleri, patlama geometrisi kulllanılıp sıkıştırılırsa kritik kütle bunun yarısından az olabilir.

Bir 239Pu atomunun bölünmesi 207,1 MeV = 3,318 × 10 −11 J, yani 19,98 TJ/mol = 83,61 TJ/kg,[2] veya yaklaşık 23 gigawatt saat/kg üretir.

radyasyon kaynağı (239Pu'nun termal fisyonu) açığa çıkan ortalama enerji [MeV cinsinden] [2]
Fisyon parçalarının kinetik enerjisi 175.8
Ani nötronların kinetik enerjisi 5.9
Ani γ ışınlarıyla taşınan enerji 7.8
Toplam anlık enerji 189.5
β− parçacıklarının enerjisi 5.3
Antinötrinoların enerjisi 7.1
Gecikmiş γ ışınlarının enerjisi 5.2
Çürüyen fisyon ürünlerinin toplamı 17.6
Ani nötronların ışınımsal yakalanmasıyla açığa çıkan enerji 11.5
Termal spektrumlu bir reaktörde açığa çıkan toplam ısı (anti-nötrinolar katkıda bulunmaz) 211.5

Üretimi

Plütonyum uranyum-238'den yapılır. 239Pu normalde nükleer reaktörlerde, yakıt çubuklarında bulunan uranyum izotoplarından birinin bir atomunun dönüştürülmesiyle oluşturulur. Bazen 238U'luk bir atom nötron radyasyonuna maruz kaldığında çekirdeği bir nötronu yakalayarak onu 239U'ya dönüştürür. Bu, daha düşük kinetik enerjiyle daha kolay gerçekleşir (Çünkü 238Ufisyon aktivasyonu 6,6 MeV'dir). 239U daha sonra hızla iki β bozunumuna uğrar - bu bir elektron ve bir anti-nötrinonun emisyonunun (), bir proton bırakmasıdır - ilk β - bozunması 239U'yu neptunyum-239'a dönüştürür ve ikinci β - bozunması 239Np'yi 239 Pu'ya dönüştürür:

Fisyon aktivitesi nispeten nadir gerçekleşir, bu nedenle önemli miktarda maruz kaldıktan sonra bile 239Pu hala büyük miktarda 238U (ve muhtemelen diğer uranyum izotoplarıyla), oksijenle, orijinal malzemenin diğer bileşenleriyle ve fisyon ürünleriyle karışır ancak yakıtın reaktörde birkaç gün maruz kalması durumunda 239Pu, yüksek saflıkta 23Pu metali elde etmek için malzemenin geri kalanından kimyasal olarak ayrılabilir.

Kaynakça

  1. ^ "Physical, Nuclear, and Chemical Properties of Plutonium". Institute for Energy and Environmental Research. 22 Temmuz 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Kasım 2015. 
  2. ^ a b "Table of Physical and Chemical Constants, Sec 4.7.1: Nuclear Fission". Kaye & Laby Online. 5 Mart 2010 tarihinde kaynağından arşivlendi. Erişim tarihi: 1 Şubat 2009. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Amerikyum</span> Yapay olarak elde edilen element

Amerikyum. Periyodik tablonun aktinitler dizisinde yer alan ve yapay olarak elde edilen kimyasal bir element.

<span class="mw-page-title-main">Nükleer fisyon</span> Ağır bir çekirdeğin daha hafif parçalara bölünmesi.

Fisyon, kütle numarası çok büyük bir atom çekirdeğinin parçalanarak kütle numarası küçük iki veya daha fazla çekirdeğe dönüşmesi olayıdır. Fisyon reaksiyonlarında radyoaktif elementler kullanılır ve tepkimeler için bir ilk enerjiye ihtiyaç vardır. Reaksiyon sonucunda kararsız çekirdekler ve nötron oluşur. Oluşan nötronların her biri yeni bir uranyum atomu ile tepkimeye girer. Bu esnada açığa çıkan nötronlar ortamdan uzaklaştırılmazsa tepkime zincirleme olarak devam eder.

<span class="mw-page-title-main">İzotop</span> Aynı elemente ait farklı atomlara verilen isim

İzotoplar, periyodik tabloda aynı atom numarasına ve konuma sahip olan ve farklı nötron sayıları nedeniyle nükleon sayıları bakımından farklılık gösteren iki veya daha fazla atom türüdür. Belirli bir elementin tüm izotopları neredeyse aynı kimyasal özelliklere sahipken, farklı atomik kütlelere ve fiziksel özelliklere sahiptirler. İzotop terimi, "aynı yer" anlamına gelen Yunan kökenli isos ve topos 'den oluşur; isimin anlamı ise, tek bir elementin farklı izotoplarının periyodik tabloda aynı pozisyonda yer alması anlamına gelir. Margaret Todd tarafından 1913 yılında Frederick Soddy'ye öneri olarak sunulmuştur.

<span class="mw-page-title-main">Zincirleme nükleer reaksiyon</span>

Radyoaktif elementlerin kararlı bir element oluşturması işlemi sırasında bunlar birkaç sayıda farklı reaksiyona (tepkimeye) uğrayabilirler. Nükleer fisyon (bölünme) böyle bir reaksiyondur. Atom sayısı 90 'dan büyük olan elementler fisyona uğrayabilirler.

<span class="mw-page-title-main">Nötron</span> Yüke sahip olmayan atomaltı parçacık

Nötron, sembolü n veya n⁰ olan, bir atomaltı ve nötr bir parçacıktır. Proton ile birlikte, atomun çekirdeğini meydana getirir. Bir yukarı ve iki aşağı kuark ve bunların arasındaki güçlü etkileşim sayesinde oluşur. Proton ve nötron yaklaşık olarak aynı kütleye sahiptir fakat nötron daha fazla kütleye sahiptir. Nötron ve protonun her ikisi nükleon olarak isimlendirilir. Nükleonların etkileşimleri ve özellikleri nükleer fizik tarafından açıklanır. Nötr hidrojen atomu dışında bütün atomların çekirdeklerinde nötron bulunur. Her atom farklı sayıda nötron bulundurabilir. Proton ve nötronlar, kuarklardan oluştukları için temel parçacık değildirler.

<span class="mw-page-title-main">Nükleer silah</span> Nükleer enerji ile yıkım gücü sağlayan silah

Nükleer silah, nükleer reaksiyon ve nükleer fisyon birlikte kullanılmasıyla ya da çok daha kuvvetli bir füzyonla elde edilen yüksek yok etme gücüne sahip silahtır. Genel patlayıcılardan farklı olarak çok daha fazla zarar vermek amaçlı kullanılır. Sadece kullanılan bir silah, tüm bir kenti ya da bir ülkeyi canlı, cansız ne varsa tamamen yok edecek güçtedir.

<span class="mw-page-title-main">Nükleer enerji santrali</span> Nükleer reaktör yardımıyla elde edilen enerjiyi dağıtan merkez

Nükleer santral (NPP) veya atom santrali (APS), ısı kaynağının nükleer reaktör olduğu termik santraldir. Termik santrallerde tipik olduğu gibi, ısı, elektrik üreten jeneratöre bağlı buhar türbinini çalıştıran buhar üretmek için kullanılır. Eylül 2023 itibarıyla Uluslararası Atom Enerjisi Kurumu, dünya çapında 32 ülkede faaliyette olan 410 nükleer santral ve inşa halinde olan 57 nükleer santral olduğunu bildirdi.

<span class="mw-page-title-main">Plütonyum</span> atom numarası 94 olan, neptünyumdan elde edilen radyoaktif bir element (simgesi Pu)

Plütonyum, 1940 yılında Glenn T. Seaborg, Edwin M. McMillan, J. W. Kennedy ve A. C. Wahlby tarafından 152 cm'lik siklotron içerisindeki uranyumun döteryum ile bombardımanı sonucunda elde edilmiştir.

Neptünyum (Np), uranyumun nötronlarla bombardımanından yapay olarak elde edilen, atom numarası 93, atom ağırlığı 239 olan, radyoaktif bir element.

Küriyum aktinitlerden, plütonyum-239'un helyum çekirdekleriyle bombardımanından elde edilen, atom numarası 96, atom ağırlığı 247 olan, radyoaktif bir element.

<span class="mw-page-title-main">Nüklit</span>

Nüklit ya da nükleer tür; atom numarası (Z), kütle numarası (A) ve nükleer enerji durumuna göre nitelenen herhangi bir atom türüdür. Bu nitelemede; atom numarasını oluşturan proton sayısı ve proton sayısıyla birlikte kütle numarasını oluşturan nötron sayısı (N) değerlendirilirken, söz konusu enerji durumunun yarı ömrü de gözlem yapmayı sağlayacak kadar (genellikle 10-10 saniyeden) uzun olmalıdır.

<span class="mw-page-title-main">Uranyum-235</span>

Uranyum-235 (kim. simge 235U), 1935 yılında Amerikalı nükleer fizikçi Arthur Jeffrey Dempster tarafından keşfedilen, 92 proton ve 143 nötronlu bir Uranyum izotopudur. Bu izotopu bir başka radyoaktif Uranyum izotopu olan 238U'den ayıran en önemli özelliği doğada ekonomik miktarlarda bulunması ve zincirleme fisyon reaksiyonu yaratabilmesidir. 235U'in yarılanma zamanı (yarı ömrü) 7.038·108 yıldır ve radyoaktif bozunma sonucu Toryum-231 izotopunu oluşturur. Bir mol 235U atomunun fisyonundan 200 MeV = 3.2 × 10−11 J, yani 18 TJ/mol = 77 TJ/kg'lik enerji açığa çıkar. Doğadaki toplam doğal uranyumun kütle olarak yalnızca %0.72'si U-235'dir, geri kalanın çoğu U-238'dir. En önemli kullanım alanları nükleer silahlar ve elektrik santralleridir.

<span class="mw-page-title-main">Uranyum-238</span>

Uranyum-238, (kim. simge 238U veya U-238), 92 proton ve 146 nötronu ile doğada en sık rastlanan (tümü içindeki oranı %99,284) Uranyum izotopudur. 238U'in yarılanma zamanı (yarı ömrü) 4.46 × 109 (4,46 milyar) yıldır ve radyoaktif ışıma yaparak (doğal ışıma enerjisi 4,267 MeV) sırasıyla bir başka uranyum izotopu olan 239U, Neptünyum 239Np ve Plütonyum 239Pu'a indirgenir. Silah sanayiinde zırh ve zırh delici mermilerde sıklıkla kullanılan Zayıflatılmış uranyum içerisinde bol miktarda 238U izotopu bulunurken, nükleer silah yapımında kullanılan Zenginleştirilmiş uranyum ise yüksek oranda 235U izotopundan oluşur. 238U direkt nükleer yakıt olarak kullanıma uygun değildir, ancak reaktör ortamında fisyon özelliği bulunan plütonyum elementinin üretiminde kullanılabilir.

Zenginleştirilmiş uranyum, içeriğindeki Uranyum-235 (kim. sembol 235U) oranı belirli yöntemlerle doğal seviyelerin üzerine çıkartılmış uranyum karışımıdır. Doğada bulunan toplam uranyum elementinin %99.284'ü Uranyum-238 (kim. sembol 238U) izotopundan oluşur. Zincirleme fisyon gerçekleştirme kabiliyeti bulunan tek uranyum izotopu olan Uranyum-235'in tüm uranyum rezervleri içerisindeki payı yalnızca %0.72'dir. Bu yüzden nükleer yakıt amaçlı olarak kullanılabilmesi için 235U izotopunun uranyum karışımı içerisindeki oranı arttırılmalıdır.

<span class="mw-page-title-main">Nükleer yakıt</span> nükleer enerji elde etmek için kullanılan maddeler

Nükleer yakıt, nükleer enerji elde etmek için kontrollü nükleer füzyon ya da nükleer fisyon yapmak amacıyla kullanılan maddelerdir. Nükleer yakıtlar tüm yakıtlar içinde enerji yoğunluğu en yüksek olanlarıdır.

<span class="mw-page-title-main">Nükleer silah yapımı</span>

Nükleer silah yapımı, nükleer bir silahın fiziksel paketlerinin patlaması için yapılan fiziksel, kimyasal ve teknik düzenlemelerdir. Dört temel tasarım türü vardır. Sonuncusu hariç hepsinde, yerleştirilmiş cihazlardaki patlayıcı enerji füzyon ile değil, nükleer fisyon ile elde edilir.

Nükleer dönüşüm, bir kimyasal element ya da bir izotopun birbirine dönüşmesidir. Her element atomlarındaki proton sayılarıyla tanımlanırlar. Başka bir deyişle, atom çekirdeği içindeki proton ya da nötron sayısında değişim gerçekleştiğinde nükleer dönüşüm meydana gelir.

<span class="mw-page-title-main">Sıvı florür toryum reaktörü</span>

Sıvı florür toryum reaktörü, bir tür erimiş tuz reaktörüdür. LFTR, yakıt için florür esaslı, erimiş, sıvı tuzlu toryum yakıt çevrimini kullanır.

Uranyum (92U), kararlı izotopu olmayan, doğal olarak oluşan radyoaktif bir elementtir. Uzun yarı ömürleri olan ve Dünya'nın kabuğunda kayda değer miktarda bulunan iki ilkel izotopu vardır: uranyum-238 ve uranyum-235. Uranyum-233 gibi diğer izotoplar üretken reaktörlerinde üretilmiştir. Doğada veya nükleer reaktörlerde bulunan izotoplara ek olarak, 214U ile 242U arasında çok daha kısa yarı ömre sahip birçok izotop üretilmiştir. Doğal uranyumun standart atom ağırlığı 238,02891(3)' tür.

Nötron yakalama, bir atom çekirdeğinin ve bir veya daha fazla nötronun daha ağır bir çekirdek oluşturmak için çarpıştığı ve birleştiği bir nükleer reaksiyondur. Nötronların elektrik yükü olmadığından, elektrostatik olarak itilen pozitif yüklü protonlardan daha kolay bir şekilde çekirdeğe girebilmektedirler.