İçeriğe atla

Plütonyum

Plütonyum (Pu)

HPeriyodik tabloHe
LiBeBCNOFNe
NaMgAlSiPSClAr
KCaScTiVCrMn FeCoNiCuZnGaGeAsSeBrKr
RbSrYZrNb MoTcRuRhPdAgCdInSnSbTeIXe
CsBa  HfTaW ReOsIrPtAuHgTlPbBiPoAtRn
FrRa  Rf DbSgBhHsMtDsRgCnNh FlMc LvTsOg 
  LaCePrNdPmSmEuGdTbDyHoErTmYbLu
  AcThPaUNpPuAmCmBkCfEsFmMdNoLr 


Temel özellikleri
Atom numarası94
Element serisi Aktinitler
Grup, periyot, blokn/a, 7, f
Görünüşgümüşî
Plütonyum
Kütle numarası239 g/mol
Elektron dizilimi[Rn] 5f6 7s2
Enerji seviyesi başına
Elektronlar
2, 8, 18, 32, 24, 8, 2
CAS kayıt numarası {{{CAS_kayıt_numarası}}}
Fiziksel Özellikleri
Maddenin hâli katı
Yoğunluk19,816 g/cm³
Sıvı hâldeki yoğunluğu 16,63 g/cm³
Ergime noktası 912,5
  °K
639,4 °C
Kaynama noktası3505 °K
3228 °C
Ergime ısısı 2,82 kJ/mol
Buharlaşma ısısı 333,5 kJ/mol
Isı kapasitesi 35,5 J/(mol·K)
Atom özellikleri
Kristal yapısı Monoklinik (Tekeğrilikli)
Yükseltgenme seviyeleri 6, 5, 4, 3
Elektronegatifliği1,28 Pauling ölçeği
İyonlaşma enerjisi1st: 584,7 kJ/mol
Atom yarıçapı175 pm
Atom yarıçapı (hes.) pm
Kovalent yarıçapıpm
Van der Waals yarıçapıpm
Diğer özellikleri
Elektrik direnci (0 °C) 1,460 nΩ·m (20°C'de)
Isıl iletkenlik (300 K) 6,74 W/(m·K)
Isıl genleşme 46,7 µm/(m·K) (25°C'de)
Ses hızı(20 °C) 2260 m/s ('de)
Mohs sertliği
Vickers sertliğiMPa
Brinell sertliğiMPa

Plütonyum, 1940 yılında Glenn T. Seaborg, Edwin M. McMillan, J. W. Kennedy ve A. C. Wahlby tarafından 152 cm'lik siklotron (atom hızlandırıcısı) içerisindeki uranyumun döteryum ile bombardımanı sonucunda elde edilmiştir.

Bütün izotopları radyoaktif ve toksiktir. Yapay olarak elde edilen plütonyum, Dünya'da bilinen en toksik elementtir. 238U çekirdeğinin nötron yakalaması ile 239U elde edilir. 239U beta bozunması ile nükleer reaktör içerisinde 239Pu (239Np ile birlikte) elde edilir.

Transuranyum serisi elementlerinin ikincisi, sun'i olarak yapılabilen radyoaktif bir element. Sembolü Pu, atom ağırlığı 244 ve atom numarası 94'tür. Plutonyum-238 izotopu; uranyum-235 izotopunun nötron bombardımanı ile, 1940 yılında, Kaliforniya Üniversitesinde Glenn T. Seaborg ve çalışma arkadaşları tarafından elde edildi. Bu tarihten sonra plutonyum, nükleer reaktör ve silahlarda kullanılmaya başlanmıştır

Plütonyum

Plutonyum gümüş görünümünde metal olup, 639,85 °C'de erir ve 3230 °C'de kaynar. Özgül ağırlığı 19,8 g/cm 3 tür. Plutonyum aktinitler serisine dahil olup, diğer aktinitler gibi toprakta nadir bulunur. Plutonyum; gümüş, alüminyum, berilyum, kobalt, demir, mangan ve nikelle alaşım meydana getirebilir. Birçok plutonyum bileşikleri yapılmıştır.

İzotopları

Plutonyuma uranyum cevherleri içerisinde eser miktarda rastlanır. Bu bakımdan reaktör ve laboratuvarlarda kullanılabilmesi için sun'i olarak üretilmesi gerekir. Kütle numaraları 232'den 246'ya kadar değişen en az 15 izotopu yapılabilmektedir. Bunların içinde en önemlisi Pu-239 izotopudur. Nükleer reaktörlerde tabii uranyum-238 izotopu nötron bombardımanına tabi tutulursa uranyum-239 elde edilir. Bu izotopun iki defa ß ışıması yapması sonucu plutonyum-239 elde edilir. Pu-239 izotopunun yarılanma süresi 24.360 senedir ve alfa ışını yayarak uranyum 235 izotopu haline dönüşür. Diğer mühim izotoplarından Pu-238 yarılanma süresi 86,4 sene, Pu-244 ise 76 milyon sene olup, Alfa ışıması yaparak yarılanırlar.

Kullanılışı

Pu-239'un fisyon (bölünme) özelliğine sahip olması ve nükleer reaktörlerde yan ürün olarak elde edilebilmesi, bunun atom ve hidrojen bombaları için nükleer patlayıcı olarak kullanılmasına imkân sağlamaktadır. 1945 senesindeNagazaki'de patlatılan atom bombası Pu-239 izotopundan yapılmıştı.

Hafif su soğutmalı nükleer reaktörlerde senede 225 Kg Pu-239 yan ürün olarak elde edilir. Bu yan ürün normal olarak tekrar işleme sokularak plutonyum oksit ve uranyum oksit ihtiva eden yakıt çubukları olarak reaktörlerde kullanılabilir. Pu-239'un sıvı-metal soğutmalı nükleer reaktörlerde kullanılması programlanmaktadır. Pu-238'in alfa ışını yayarken çıkardığı ısı, Apollo uzay araçlarında elektrik üretimi maksadı ile kullanılmıştır. Pu-238 sun'i kalp yapım çalışmalarında da kullanılmaktadır. Pu-242 ve Pu-244'ün tıp ve metalurjide kullanma sahaları vardır.

Elde edilişi

Plutonyumu, reaktördeki radyasyon veren diğer maddelerden ayırmak ve saflaştırmak için çeşitli kimyasal işlemlere başvurulur. Uranyum ve plutonyum ihtiva eden reaktörden plutonyumu ayırmak için karışım, nitrik asit içinde çözülür. Burada plutonyum 6+ oksidasyon basamağına kadar yükseltgenir. Sonra hekzon (metil n-butil keton) ile karışımdan çekilip alınır. Bu işlemi alüminyum nitrat çözeltisiyle muamele takip eder. Alüminyum nitrat çözeltisi plutonyumu (3+) oksidasyon kademesine indirir. Saf plutonyum elde edilmesi için oksitleme işlemi birkaç defa tekrarlanır.

Etkileri

Plutonyum çok zehirlidir. Deri üzerindeki bir yaraya mikrogram miktarı temas ederse kansere sebep olur. Plutonyum zerrecikleri havada kolayca askıda kalabildiği için, teneffüs yolu ile ciğerlere alınabilir. Plutonyum ciğer kanserine sebep olur. Vücut içerisine girer girmez, kemik maddesine hücum ederek kemik kanserine de sebebiyet verebilir.

Nükleer santral reaktörlerinin artıkları bol miktarda plutonyum ihtiva ettiği için çok iyi muhafaza edilmelidir. Nükleer bomba denemeleriyle çevreye plutonyum artıkları yayılmış durumdadır. Her patlayacak atom bombası insanlığın felaketine ortam hazırlamaktadır.

İlgili Araştırma Makaleleri

Aktinitler, periyodik tabloda yedinci sırada yer alan elementler. Atom numaraları 89 ile 103 arasına olan 15 radyoaktif elementten oluşur. Bunlar; aktinyum, toryum, protaktinyum, uranyum, neptünyum, plutonyum, amerikyum, küriyum, berkelyum, kaliforniyum, aynştaynyum, fermiyum, mendelevyum, nobelyum, lavrensiyum'dur. Bunlardan ilk dört element doğada bulunurlar. Diğerleri nükleer reaksiyonlarla elde edilmektedir. Aktinitler ismi serideki ilk element olan aktinyumdan ve esas olarak elementlerin radyoaktivitelerini ima eden Yunanca ακτις (aktis), "ışın" kelimesinden alır.

<span class="mw-page-title-main">Amerikyum</span> Yapay olarak elde edilen element

Amerikyum. Periyodik tablonun aktinitler dizisinde yer alan ve yapay olarak elde edilen kimyasal bir element.

<span class="mw-page-title-main">Radyoaktivite</span> Atom çekirdeğinin kendiliğinden parçalanması

Radyoaktivite, radyoaktiflik, ışınetkinlik veya nükleer bozunma; atom çekirdeğinin, daha küçük çekirdekler veya elektromanyetik ışımalar yayarak kendiliğinden parçalanmasıdır. Çekirdek tepkimesi sırasında veya çekirdeğin bozunması ile ortaya çıkar. En yaygın ışımalar alfa(α), beta(β) ve gamma(γ) ışımalarıdır. Bir maddenin radyoaktivitesi bekerel veya curie ile ölçülür.

<span class="mw-page-title-main">Nükleer fisyon</span> Ağır bir çekirdeğin daha hafif parçalara bölünmesi.

Fisyon, kütle numarası çok büyük bir atom çekirdeğinin parçalanarak kütle numarası küçük iki veya daha fazla çekirdeğe dönüşmesi olayıdır. Fisyon reaksiyonlarında radyoaktif elementler kullanılır ve tepkimeler için bir ilk enerjiye ihtiyaç vardır. Reaksiyon sonucunda kararsız çekirdekler ve nötron oluşur. Oluşan nötronların her biri yeni bir uranyum atomu ile tepkimeye girer. Bu esnada açığa çıkan nötronlar ortamdan uzaklaştırılmazsa tepkime zincirleme olarak devam eder.

<span class="mw-page-title-main">İzotop</span> Aynı elemente ait farklı atomlara verilen isim

İzotoplar, periyodik tabloda aynı atom numarasına ve konuma sahip olan ve farklı nötron sayıları nedeniyle nükleon sayıları bakımından farklılık gösteren iki veya daha fazla atom türüdür. Belirli bir elementin tüm izotopları neredeyse aynı kimyasal özelliklere sahipken, farklı atomik kütlelere ve fiziksel özelliklere sahiptirler. İzotop terimi, "aynı yer" anlamına gelen Yunan kökenli isos ve topos 'den oluşur; isimin anlamı ise, tek bir elementin farklı izotoplarının periyodik tabloda aynı pozisyonda yer alması anlamına gelir. Margaret Todd tarafından 1913 yılında Frederick Soddy'ye öneri olarak sunulmuştur.

<span class="mw-page-title-main">Nötron</span> Yüke sahip olmayan atomaltı parçacık

Nötron, sembolü n veya n⁰ olan, bir atomaltı ve nötr bir parçacıktır. Proton ile birlikte, atomun çekirdeğini meydana getirir. Bir yukarı ve iki aşağı kuark ve bunların arasındaki güçlü etkileşim sayesinde oluşur. Proton ve nötron yaklaşık olarak aynı kütleye sahiptir fakat nötron daha fazla kütleye sahiptir. Nötron ve protonun her ikisi nükleon olarak isimlendirilir. Nükleonların etkileşimleri ve özellikleri nükleer fizik tarafından açıklanır. Nötr hidrojen atomu dışında bütün atomların çekirdeklerinde nötron bulunur. Her atom farklı sayıda nötron bulundurabilir. Proton ve nötronlar, kuarklardan oluştukları için temel parçacık değildirler.

<span class="mw-page-title-main">Kaliforniyum</span> Kaliforniya Üniversitesinde keşfedilmiş bir radyoaktif element

Kaliforniyum, sembolü Cf ve atom numarası 98 olan radyoaktif metalik bir kimyasal elementtir.

Neptünyum (Np), uranyumun nötronlarla bombardımanından yapay olarak elde edilen, atom numarası 93, atom ağırlığı 239 olan, radyoaktif bir element.

Küriyum aktinitlerden, plütonyum-239'un helyum çekirdekleriyle bombardımanından elde edilen, atom numarası 96, atom ağırlığı 247 olan, radyoaktif bir element.

Plütonyum-239, plütonyumun bir izotopudur. Plütonyum-239, nükleer silah üretiminde kullanılan birincil fisil izotoptur ancak uranyum-235 de bu amaç için kullanılır. Plütonyum-239 aynı zamanda uranyum-235 ve uranyum-233 ile birlikte termal spektrumlu nükleer reaktörlerde yakıt olarak kullanılabilen üç ana izotoptan biridir. Plütonyum-239'un yarı ömrü 24.110 yıldır.

Lavrensiyum periyodik tabloda simgesi Lr olan 103 g/mol atom ağırlığı olan radyoaktif ve yapay bir elementtir. En kararlı izotopu 262Lr'dir ve yarılanma süresi yaklaşık 4 saattir. Lavrensiyum Kaliforniyum elementinden sentezlenir ve kullanım alanı yoktur.

<span class="mw-page-title-main">Uranyum-238</span>

Uranyum-238, (kim. simge 238U veya U-238), 92 proton ve 146 nötronu ile doğada en sık rastlanan (tümü içindeki oranı %99,284) Uranyum izotopudur. 238U'in yarılanma zamanı (yarı ömrü) 4.46 × 109 (4,46 milyar) yıldır ve radyoaktif ışıma yaparak (doğal ışıma enerjisi 4,267 MeV) sırasıyla bir başka uranyum izotopu olan 239U, Neptünyum 239Np ve Plütonyum 239Pu'a indirgenir. Silah sanayiinde zırh ve zırh delici mermilerde sıklıkla kullanılan Zayıflatılmış uranyum içerisinde bol miktarda 238U izotopu bulunurken, nükleer silah yapımında kullanılan Zenginleştirilmiş uranyum ise yüksek oranda 235U izotopundan oluşur. 238U direkt nükleer yakıt olarak kullanıma uygun değildir, ancak reaktör ortamında fisyon özelliği bulunan plütonyum elementinin üretiminde kullanılabilir.

Zenginleştirilmiş uranyum, içeriğindeki Uranyum-235 (kim. sembol 235U) oranı belirli yöntemlerle doğal seviyelerin üzerine çıkartılmış uranyum karışımıdır. Doğada bulunan toplam uranyum elementinin %99.284'ü Uranyum-238 (kim. sembol 238U) izotopundan oluşur. Zincirleme fisyon gerçekleştirme kabiliyeti bulunan tek uranyum izotopu olan Uranyum-235'in tüm uranyum rezervleri içerisindeki payı yalnızca %0.72'dir. Bu yüzden nükleer yakıt amaçlı olarak kullanılabilmesi için 235U izotopunun uranyum karışımı içerisindeki oranı arttırılmalıdır.

<span class="mw-page-title-main">Radyonüklit</span>

En basit çekirdek olan hidrojen çekirdeği hariç bütün çekirdeklerde nötron ve proton bulunur. Nötronların protonlara oranı hafif izotoplarda birebir oranındayken periyodik tablonun sonundaki ağır elementlere doğru bu oran gittikçe artmaktadır. Bu oran daha da artarak nüklitin artık kararlı olmadığı bir noktaya gelir. Daha ağır nüklitler, dışarıya verecekleri fazla enerjileri olduğundan kararsızlardır. Bunlara radyonüklit denir. Bu süreçte radyonüklid radyoaktif bozunmaya uğrar ve bu esnada gama ışını ve/veya atom altı parçacıklar yayabilir. Bu parçacıklar iyonlaştırıcı radyasyonu oluştur. Radyonüklidler doğada bulunabildikleri gibi yapay yollarla da üretilebilirler.

<span class="mw-page-title-main">Nükleer silah yapımı</span>

Nükleer silah yapımı, nükleer bir silahın fiziksel paketlerinin patlaması için yapılan fiziksel, kimyasal ve teknik düzenlemelerdir. Dört temel tasarım türü vardır. Sonuncusu hariç hepsinde, yerleştirilmiş cihazlardaki patlayıcı enerji füzyon ile değil, nükleer fisyon ile elde edilir.

Nükleer dönüşüm, bir kimyasal element ya da bir izotopun birbirine dönüşmesidir. Her element atomlarındaki proton sayılarıyla tanımlanırlar. Başka bir deyişle, atom çekirdeği içindeki proton ya da nötron sayısında değişim gerçekleştiğinde nükleer dönüşüm meydana gelir.

Yapay elementler Dünya’da doğal olarak bulunmayan veya eser miktarda bulunan, fakat nükleer laboratuvarlarda başka elementlerden elde edilebilen elementlerdir.

Uranyum (92U), kararlı izotopu olmayan, doğal olarak oluşan radyoaktif bir elementtir. Uzun yarı ömürleri olan ve Dünya'nın kabuğunda kayda değer miktarda bulunan iki ilkel izotopu vardır: uranyum-238 ve uranyum-235. Uranyum-233 gibi diğer izotoplar üretken reaktörlerinde üretilmiştir. Doğada veya nükleer reaktörlerde bulunan izotoplara ek olarak, 214U ile 242U arasında çok daha kısa yarı ömre sahip birçok izotop üretilmiştir. Doğal uranyumun standart atom ağırlığı 238,02891(3)' tür.

<span class="mw-page-title-main">Aktinit kimyası</span>

Aktinit kimyası, aktinitlerin süreçlerini ve moleküler sistemlerini araştıran nükleer kimyanın ana dallarından biridir. Aktinitler, isimlerini grup 3 elementi olan aktinyumdan alır. Resmi olmayan kimyasal sembol An, aktinit kimyasının genel tartışmalarında herhangi bir aktinide atıfta bulunmak için kullanılır. Aktinidlerin biri hariç tümü, 5f elektron kabuğunun doldurulmasına karşılık gelen f blok elementleridir. Bir d-blok elementi olan lavrensiyum da genellikle bir aktinit olarak kabul edilir. Lantanitlerle karşılaştırıldığında, yine çoğunlukla f-blok elementleri, aktinitler çok daha değişken değerlik gösterirler. Aktinid serisi, aktiniyumdan lavrensiyuma kadar atom numaraları 89 ile 103 arasında değişen 15 metalik kimyasal elementi kapsar.

Çevrede aktinitler, dünya ortamındaki aktinitlerin kaynakları, çevresel davranışları ve etkileri ile ilgilidir. Çevresel radyoaktivite yalnızca aktinitlerle sınırlı değildir; radon ve radyum gibi aktinit olmayanlar da dikkat çekicidir. Tüm aktinitler radyoaktif olsa da, yer kabuğunda uranyum ve toryum gibi birçok aktinit vardır. Bu mineraller, karbon tarihleme ve çoğu dedektör için, X-ışınları ve daha fazlası gibi birçok yönden faydalıdır.