İçeriğe atla

Pisagorik ortalama

Klasik olarak üç değişik Pisagorik ortalama vardır: Bunlar aritmetik ortalama (A), geometrik ortalama (G) ve harmonik ortalama (H) olup şu formüller ile tanımlanılırlar.:

Bu üç tip ortalamanın şu genel özellikleri bulunur:

Eğer bütün veriler pozitif (yani i=1,...n xi>0) iseler, bu ortalamalar şöyle bir sıralamaya tabi olurlar:

Bu genel olarak eşitliksiz halinde olup eşitlilik ancak bütün veriler xi birbirine aynı değerlilerse ortaya çıkabilir.

Bu eşitsizlik genelleştirilmiş ortalamalar için bir özel haldir.

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Riemann toplamı</span>

Matematikte, Riemann toplamı genellikle fonksiyon eğrisinin altında kalan bölgenin yaklaşık alanıdır. Bu toplama, Alman matematikçi Bernhard Riemann'ın soyadı verilmiştir.

<span class="mw-page-title-main">Taylor serisi</span>

Taylor serisi matematikte, bir fonksiyonun, o fonksiyonun terimlerinin tek bir noktadaki türev değerlerinden hesaplanan sonsuz toplamı şeklinde yazılması şeklindeki gösterimi/açılımıdır. Adını İngiliz matematikçi Brook Taylor'dan almıştır. Eğer seri sıfır merkezli ise, Taylor serisi daha basit bir biçime girer ve bu özel seriye İskoç matematikçi Colin Maclaurin'e istinaden Maclaurin serisi denir. Bir serinin terimlerinden sonlu bir sayı kadarını kullanmak, bu seriyi bir fonksiyona yakınsamak için genel bir yöntemdir. Taylor serisi, Taylor polinomunun limiti olarak da görülebilir.

<span class="mw-page-title-main">Aritmetik ortalama</span>

Aritmetik ortalama, bir sayı dizisindeki elemanların toplamının eleman sayısına bölünmesi ile elde edilir. İstatistik bilim dalında hem betimsel istatistik alanında hem de çıkarımsal istatistik alanında en çok kullanan merkezi eğilim ölçüsü' dür.

Ortalama veya merkezsel konum ölçüleri, istatistik bilim dalında ve veri analizinde kullanılan bir veri dizisinin orta konumunu, tek bir sayı ile ifade eden betimsel istatistik ölçüsüdür. Günlük hayatta ortalama dendiğinde genellikle kast edilen aritmetik ortalama olmakla beraber bu ölçünün çok belirli bazı dezavantajları söz konusudur. Bu yüzden matematik ve istatistikte, bir anakütle veya örneklem veri dizisi değerlerini temsil eden tek bir orta değer veya beklenen değer, olarak medyan (ortanca), mod (tepedeğer), geometrik ortalama, harmonik ortalama vb adlari verilen birçok değişik merkezsel konum ölçüleri geliştirilmiş ve pratikte kullanılmaktadır.

<span class="mw-page-title-main">Standart sapma</span> İstatistikte bir varyasyon ölçüsü

Standart sapma, Olasılık kuramı ve istatistik bilim dallarında, bir anakütle, bir örneklem, bir olasılık dağılımı veya bir rassal değişken, veri değerlerinin yayılımının özetlenmesi için kullanılan bir ölçüdür. Matematik notasyonunda genel olarak, bir anakütle veya bir rassal değişken veya bir olasılık dağılımı için standart sapma σ ile ifade edilir; örneklem verileri için standart sapma için ise s veya s'

<span class="mw-page-title-main">Geometrik ortalama</span> n adet sayının çarpımının ninci kökü

Geometrik ortalama, birim değerlerinin birbirleriyle çarpımlarının, birim sayısı olmak üzere, 'inci dereceden köküne denir.

Harmonik ortalama, gözlem sonuçlarının terslerinin aritmetik ortalamasının tersidir.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

Fiyat endeks sayılarını hesaplamak için birçok sayıda değişik formül bulunmaktadır. Bu değişik fiyat endeks sayıları için formüllerin hepsi veri olarak fiyatlar ve miktarları kullanmaktadırlar. Ancak bu aynı verileri değişik olarak birleştirmektedir. Genel olarak bir fiyat endeksi, temel (baz) dönem fiyatlarının, diğer zaman dönemleri fiyatlarının, temel (baz) dönem miktarlarının ve diğer dönem miktarlarının değişik bileşimlerinin toplamı özet halinde bulmaktadır. Değişik fiyat endeksleri formülleri sınıflandırılırken ilk sınıflama harcamaları esas alan endeksler ve fiyat relatiflerinin ağırlıklı ortalamasını esas alan formüller şeklinde yapılabilir.

Bir genelleştirilmiş ortalama; Pisagorik ortalamalarını, yani aritmetik ortalama, geometrik ortalama ve harmonik ortalamayı, aynı tanım formülünde birleştirip kapsayan bir soyut genelleştirmedir. Güç ortalaması veya Holder ortalaması adları da verilmektedir.

İstatistik bilim dalında ağırlıklı ortalama betimsel istatistik alanında, genellikle örneklem, veri dizisini özetlemek için bir merkezsel konum ölçüsüdür. En çok kullanan ağırlıklı ortalama tipi ağırlıklı aritmetik ortalamadır. Burada genel olarak bir örnekle bu kavram açıklanmaktadır. Değişik özel tipli ağırlıklar alan özel ağırlıklı aritmetik ortalamalar bulunmaktadır. Diğer ağırlıklı ortalamalar ağırlıklı geometrik ortalama ve ağırlıklı harmonik ortalamadir. Ağırlıklı ortalama kavramı ile ilişkili teorik açıklamalar son kısımda ele alınacakdır.

Matematik ve istatistik bilim dallarında genelleştirilmiş f-ortalaması merkezsel konum ölçülerinden olan değişik ortalamalar için tek bir genel fonksiyon ve formül bulma ve kullanma çabaları sonucu ortaya çıkarılmıştır. Benzer çabalar biraz değişik diğer bir genelleştirilmiş ortalama formülünü vermiştir. Bu nedenle isim karışıklığını önlemek için f-ortalaması çeşitli diğer isimlerde de anılmaktadır. Bazen yarı-aritmetik ortalama adı kullanılmaktadır. Bu kavramı ve formülü ilk geliştiren Rus matematikçisi A.Kolmogorov adına atfen de bazen Kolmogorov ortalaması olarak isimlendirilmektedir.

<span class="mw-page-title-main">Harmonik fonksiyon</span>

Matematiğin matematiksel fizik alanında ve rassal süreçler teorisinde bir harmonik fonksiyon, Rn'nin U gibi açık bir kümesi üzerinde f : UR şeklinde tanımlı, Laplace denklemini, yani

<span class="mw-page-title-main">Harmonik seriler</span>

Harmonik seri ıraksak bir seridir, harmonik sözcüğü ise müzikten devşirilmiştir.

Matematikte ıraksak seri yakınsak olmayan bir sonsuz seridir. Bu, serinin kısmi toplamlarının herhangi bir limit değeri olmadığı anlamına gelmektedir.

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

Öklid'in teoremi, sayılar teorisinde temel bir ifade olup sonsuz sayıda asal sayı olduğunu ileri sürer. Teoremin iyi bilinen farklı ispatları bulunmaktadır.

Medyan bir anakütle ya da örneklem veri serisini küçükten büyüğe doğru sıraladığımızda, seriyi ortadan ikiye ayıran değere denir. İstatistiğin bir alt dalı olan betimsel istatistikde medyan bir merkezsel konum ölçüsü kabul edilir.

<span class="mw-page-title-main">Logaritmik ortalama</span>

Matematikte logaritmik ortalama, iki pozitif gerçek sayının farkının bu sayıların doğal logaritmalarının farkına oranı olarak tanımlanır. Bu hesaplama, ısı ve kütle transferi içeren mühendislik problemlerinde kullanılabilir.

Matematikte Stolarsky ortalaması, logaritmik ortalamanın bir genelleştirmesidir. 1975 yılında Kenneth B. Stolarsky tarafından ortaya atılmıştır.