İçeriğe atla

Pisagor teoremi

Kontrol Edilmiş
Pisagor teoremi
TürTeorem
AlanÖklid geometrisi
İfadeDik kenarlardaki (a ve b) iki karenin alanlarının toplamı, hipotenüs (c) üzerindeki karenin alanına eşittir.
Sembolik gösterim
Genelleştirmeler
Sonuçlar

Pisagor teoremi (YunancaΠυθαγόρειο θεώρημα) veya Pisagor bağıntısı, Öklid geometrisinde üçgenin kenarları arasındaki temel ilişkiyi kuran ilk teoremlerden biridir. Teoreme gerçek hayattan örnek olarak telli çalgıları gösterilebilir; 'telin uzunluğu arttıkça titreşim artar' prensibine dayanır. Pisagor'un denklemi olarak da isimlendirilen bu teorem, a, b ve c kenarlarının arasındaki ilişkiyi şu şekilde açıklar:[1]

burada c hipotenüsün uzunluğunu, a ve b üçgenin diğer iki tarafının uzunluklarını temsil eder. Tarihî anlamda çok tartışılan teorem, adını eski Yunan filozof ve matematikçi Pythagoras'dan ‪(Πυθαγόρας, MÖ 570 – MÖ 495) almıştır.

Bu teorem, birçok matematiksel teoremin ispatlanmasını sağlamıştır. Binlerce yıl öncesine dayanan geometrik ispatlar ve cebirsel ispatlar da dahil olmak üzere bu, çok çeşitlidir. Bu teorem, yüksek boyutlu uzaylardan, Öklid olmayan uzaylara, doğru üçgen olmayan nesnelere ve aslında hiç üçgen olmayan nesnelere, n boyutlu katılara çeşitli şekillerle entegre edilip genelleştirilebilir. Pisagor teoremi, matematiksel soyutlamanın, mistik ya da entelektüel gücün sembolü olarak matematiğin ilgisini çekmiştir; edebiyat, sinema, müzikal, şarkı ve çizgi filmlerde de popüler olmuştur.

Yeniden düzenleme ispatı

Yeniden düzenleme ispatı (animasyonu görüntülemek için tıklayın)

Şekilde gösterilen iki büyük karenin her biri dört özdeş üçgen içerir ve iki büyük kare arasındaki tek fark, üçgenlerin farklı şekilde konumlandırılmasıdır. Bu nedenle, iki büyük karenin her birinin içindeki beyaz boşluk eşit alana sahip olmalıdır. Beyaz boşluğun alanını eşitlemek Pisagor teoremini verir, Q.E.D.[2]

Heath, Öklid'in Elementler'i'ndeki Önerme I.47 üzerine yaptığı yorumda bu kanıtı verir ve Bretschneider ve Hankel'in, Pisagor'un bu ispatı biliyor olabileceğine dair önerilerinden bahseder. Heath, Pisagor teoreminin ispatı için farklı bir öneriyi destekliyordu, ancak tartışmasının başlangıcından itibaren şunu kabul ediyor: "Pisagor'dan sonraki ilk beş yüzyıla ait olan Yunan edebiyatı, bu veya buna benzer herhangi büyük bir keşfi belirten hiçbir ifade içermiyor."[3] Son araştırmalar Pisagor'un, matematiğin babası olma rolünde yüksek olasılık gösterdi ancak bu konudaki tartışmalar devam ediyor.[4]

Teoremin diğer biçimleri

Eğer c hipotenüs uzunluğunu, a ve b diğer iki tarafın uzunluğunu gösteriyorsa Pisagor teoremi, cebirsel olarak şöyle ifade edilir:

Hem a hem de b'nin uzunlukları biliniyorsa, c şu şekilde hesaplanır:

Hipotenüs c'nin ve en az bir tarafın (a veya b) uzunluğu biliniyorsa, diğer tarafın uzunluğu şu şekilde hesaplanır:

veya

Pisagor denklemi, dik üçgenin kenarlarını basit bir şekilde ilişkilendirir. Böylece herhangi bir iki tarafın uzunluğu biliniyorsa üçüncü tarafın uzunluğu bulunabilir. Teoremin başka bir sonucu, herhangi bir dik üçgende hipotenüsün diğer taraflardan herhangi birinden daha büyük, ancak toplamlarından daha az olmasıdır.

Bu teoremin genelleştirilmesi, diğer iki tarafın uzunlukları ve aralarındaki açı göz önüne alındığında, herhangi bir üçgenin herhangi bir tarafının uzunluğunun hesaplanmasını sağlayan kosinüs yasasıdır. Diğer taraflar arasındaki açı dikaçı ise, kosinüs yasası Pisagor denklemine indirgenir. Matematikte Pisagor teoremi, Öklid geometrisinde bir dik üçgenin 3 kenarı için bir bağıntıdır. Bilinen en eski matematiksel teoremlerden biridir. Teorem sonradan MÖ 6. yüzyılda Yunan filozof ve matematikçi Pisagor'a atfen isimlendirilmiş ise de, Hindu, Yunan, Çinli ve Babilli matematikçiler teoremin unsurlarını, o yaşamadan önce bilmekteydiler. Pisagor teoreminin bilinen ilk ispatı Öklid'in Elementler eserinde bulunabilir.

Teoremin diğer ispatları

Pisagor teoreminin animasyonlu geometrik kanıtı

Bu teoremin, diğer birçok teoremden daha fazla ispatı olabilir (ikinci dereceden karşılıklılık yasası, bu ayrım için başka bir rakiptir); sadece The Pythagorean Proposition kitabı 370 ispat içeriyor.[5]

Üçgende benzerliği kullanarak ispat

Benzer üçgenleri kullanarak ispat

Bu ispat, benzer iki üçgenin kenar oranlarına, yani benzer üçgenlere karşılık gelen herhangi iki kenarın birbirine oranına, üçgenlerin boyutuna bakılmaksızın aynı olmasına dayanmaktadır.

ABC, şekilde gösterildiği gibi C'ye uzanan dik açılı bir dik üçgeni temsil etsin. Yüksekliği, C noktasından olsun ve H ile, AB doğrusu üzerinde kesişsin. H, hipotenüs c'nin uzunluğunu d ve e'ye bölsün. Yeni ACH üçgeni, ABC üçgeni ile benzer olsun, çünkü her ikisi de bir dik açıya sahip (yükseklik tanımına göre) ve açıyı A'da paylaşsınlar (bu, üçüncü açı θ'nın her iki üçgende de aynı olacağı anlamına gelir). Üçgenlerin benzerliğinin ispatı, üçgen varsayımını gerektirir: "Bir üçgendeki açıların toplamı iki dik açıya eşit ve paralel postülata eşdeğerdir" varsayımla eşdeğerdir. Üçgenlerin benzerliği, karşılık gelen tarafların oranlarının eşitliğine yol açar:

İlk sonuç θ açısının kosinüslerine eşittir, ikinci sonuç ise sinüslerine eşittir.

Bu iki eşitliğin toplanması,

birkaç basitleştirmeden sonra, Pisagor teoremini şöyle ifade eder:

Sayısal örnekler

En yaygın olarak karşılaşılan örneklerden biri "3-4-5" üçgenidir.

Bu, komşu kenarları sırasıyla 3 birim, 4 birim ve karşı kenarı 5 birim olan bir dik üçgeni temsil eder.

Diğer örnekleri ise ...

Notlar

  1. ^ Judith D. Sally; Paul Sally (2007). "Chapter 3: Pythagorean triples". Roots to research: a vertical development of mathematical problems. American Mathematical Society Bookstore. s. 63. ISBN 0-8218-4403-2. 19 Ağustos 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Mayıs 2020. 
  2. ^ Benson, Donald. The Moment of Proof : Mathematical Epiphanies 18 Ağustos 2020 tarihinde Wayback Machine sitesinde arşivlendi., pp. 172–173 (Oxford University Press, 1999).
  3. ^ Euclid (1956), pp. 351–352
  4. ^ Huffman, Carl. "Pythagoras". Zalta, Edward N. (Ed.). The Stanford Encyclopedia of Philosophy (Winter 2018 Edition). 8 Mart 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Ağustos 2020. , "It should now be clear that decisions about sources are crucial in addressing the question of whether Pythagoras was a mathematician and scientist. The view of Pythagoras' cosmos sketched in the first five paragraphs of this section, according to which he was neither a mathematician nor a scientist, remains the consensus."
  5. ^ Loomis 1968

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Dik üçgen</span>

Dik üçgen, iç açılarından biri 90° olan üçgendir. Çemberde çapı gören çevre açı 90°'dir.

<span class="mw-page-title-main">Geometri</span> matematiğin uzamsal ilişkiler ile ilgilenen alt dalı

Geometri, matematiğin uzamsal ilişkiler ile ilgilenen alt dalıdır. Yunanca Γεωμετρία "Geo" (yer) ve "metro" (ölçüm) birleşiminden türetilmiş bir isimdir.

<span class="mw-page-title-main">Sinüs teoremi</span> Öklid geometrisinde üçgenlerle ilgili bir teorem

Sinüs teoremi, bir çembersel üçgende bir kenar ve bu kenar karşısındaki açının sinüsleri oranı sabittir. Sinüs, dik açılı üçgenlerde dik olmayan bir açının karşısında kalan dik kenar ile hipotenüsün birbirine oranıdır.

<span class="mw-page-title-main">Kenarortay</span>

Kenarortay üçgende bir kenarın orta noktasını karşı köşeye birleştiren doğru parçası. Kenarortayların kesiştiği noktaya o üçgenin ağırlık merkezi denir ve G harfi ile adlandırılır.

<span class="mw-page-title-main">Açıortay</span>

Açıortay, geometride bir açıyı iki eşit açı şeklinde bölen yapıdır. Bir açıya teğet tüm çemberler çizilerek merkezleri birleştirilirse, o açının açıortayı elde edilir. Bu nedenle açıortaylardan açının kollarına indirilen dikmeler, o çemberlerden birinin merkezinden teğetlere inilen yarıçap dikmeleri olacağından, dikmeler birbirine eşit olur. Her iki kolda oluşan üçgenler de birbirine eşit olacağından, dikmelerin açıortay kollarını kestiği noktalar ile açının bulunduğu köşeye olan uzaklıklar eşit olur.

<span class="mw-page-title-main">Kosinüs teoremi</span>

Kosinüs teoremi, geometride, üçgen üzerinde iki kenarı ve aralarındaki açı verilmiş iken bilinmeyen kenarı bulmak amacıyla kullanılan formüldür. Şekil 1'deki üçgene göre kosinüs teoreminin uygulanışı şöyledir:

<span class="mw-page-title-main">Menelaus teoremi</span> Bir üçgenin her bir kenar doğrusundan tepe noktası olmayan birer nokta olmak üzere üç noktanın, ancak ve ancak her üç kenar doğrusu üzerinde belirledikleri işaretli oranların çarpımı -1 ise eş doğrusal olduğunu belirten Öklid geometri

İskenderiyeli Menelaus'a izafe edilen Menelaus teoremi düzlemsel geometride üçgenler üzerine bir teoremdir. , ve noktalarından oluşan üçgeninde , ve doğruları üzerinde bulunan ve üçgenin köşelerinden ayrık , ve noktalarının aynı doğru üzerinde olabilmesi ancak ve ancak:

<span class="mw-page-title-main">Thales teoremi (çember)</span>

Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Apollonius teoremi</span> Öklid geometrisinde bir teorem

Geometri'de, Apollonius teoremi, üçgenin bir kenarortay uzunluğunu kenarlarının uzunluklarıyla ilişkilendiren bir teoremdir.

<span class="mw-page-title-main">Açıortay teoremi</span> Bir üçgeni bölen iki parçanın göreli uzunlukları hakkında

Geometride açıortay teoremi, bir üçgenin kenarının karşı açıyı ikiye bölen bir çizgiyle bölündüğü iki parçanın göreli uzunluklarıyla ilgilidir. Göreli uzunluklarını, üçgenin diğer iki kenarının göreli uzunluklarına eşitler.

<span class="mw-page-title-main">Crossbar (Pasch) teoremi</span> Diğer iki ışın arasındaki bir ışın, ilk iki ışın arasındaki herhangi bir çizgi parçasını keser.

Geometride Crossbar (Pasch) teoremi, ışını ışını ile ışını arasındaysa, ışınının doğrusu parçasını keseceğini belirtir.

<span class="mw-page-title-main">Pappus'un alan teoremi</span> rastgele bir üçgenin üç kenarına iliştirilmiş üç paralelkenarın alanları arasındaki ilişkiyi verir

Pappus'un alan teoremi, verilen herhangi bir üçgenin üç kenarına yaslanmış üç paralelkenarın alanları arasındaki ilişkiyi tanımlar. Pisagor teoreminin bir genellemesi olarak da düşünülebilecek teorem, adını onu keşfeden Yunan matematikçi İskenderiyeli Pappus'tan almıştır.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Carnot teoremi (dikmeler)</span>

Adını Fransız matematikçi Lazare Carnot'dan alan Carnot teoremi, üçgenin (uzatılmış) kenarlarına dik olan üç doğrunun ortak bir kesişme noktası için gerek ve yeter koşulu tanımlar. Teorem ayrıca Pisagor teoreminin bir genellemesi olarak düşünülebilir.

<span class="mw-page-title-main">De Gua teoremi</span>

Adını Fransız matematikçi Jean Paul de Gua de Malves'den alan De Gua teoremi, Pisagor teoreminin üç boyutlu bir analojisidir.

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

<span class="mw-page-title-main">Ters Pisagor teoremi</span> Öklid geometrisinde dik üçgenlerle ilgili bir teorem

Geometride, ters Pisagor teoremi aşağıdaki gibidir:

<span class="mw-page-title-main">Pisagor trigonometrik özdeşliği</span> sin² θ + cos² θ = 1

Pisagor trigonometrik özdeşliği, daha basit ifadeyle Pisagor özdeşliği olarak da adlandırılır, Pisagor teoremini trigonometrik fonksiyonlar cinsinden ifade eden bir özdeşliktir. Açıların toplam formülleri ile birlikte, sinüs ve kosinüs fonksiyonları arasındaki temel bağıntılardan biridir. Özdeşlik şu şekildedir: