İçeriğe atla

Pi ile ilgili konuların listesi

Kontrol Edilmiş

Bu, temel bir matematik sabiti olan pi (π) ile ilgili konuların listesidir.

İlgili Araştırma Makaleleri

Matematikte cebirin temel teoremi karmaşık değişkenli polinomların köklerinin varlığıyla ilgili temel bir sonuçtur. D'Alembert-Gauss teoremi olarak da anılmaktadır.

<span class="mw-page-title-main">Pi sayısı</span> dairenin çevresinin çapına oranını ifade eden irrasyonel matematik sabiti

Pi sayısı , bir dairenin çevresinin çapına bölümü ile elde edilen irrasyonel matematik sabitidir. İsmini, Yunanca περίμετρον (çevre) sözcüğünün ilk harfi olan π harfinden alır. Pi sayısı, Arşimet sabiti ve Ludolph sayısı olarak da bilinir. Aynı zamanda ismini yunancada pie anlamına gelen πίτα' dan alır.

<span class="mw-page-title-main">Çember</span>

Çember ya da dönge, düzlemde sabit bir noktaya eşit uzaklıkta bulunan noktaların kümesinin oluşturduğu yuvarlak, geometrik şekil. Çemberin çevrelediği 2 boyutlu alana daire denir.

Legendre sabiti, asal sayılar teoremi keşfedilmeden önce, bir yanılgı neticesinde kabul edilmiş bir matematiksel sabittir.

<span class="mw-page-title-main">Gama fonksiyonu</span>

Gama fonksiyonu, matematikte faktöriyel fonksiyonunun karmaşık sayılar ve tam sayı olmayan reel sayılar için genellenmesi olan bir fonksiyondur. Г simgesiyle gösterilir.

<span class="mw-page-title-main">Cauchy integral teoremi</span> Matematiksel analiz ile ilgili bir teorem

Matematiğin bir dalı olan karmaşık analizde, Augustin Louis Cauchy'nin ismine atfedilen Cauchy integral teoremi, karmaşık düzlemdeki holomorf fonksiyonların çizgi integralleri hakkında önemli bir teoremdir.

<span class="mw-page-title-main">Cauchy integral formülü</span>

Matematikte, Augustin Louis Cauchy'nin adıyla adlandırılan Cauchy integral formülü karmaşık analizde merkezi bir ifadedir. Bir disk üzerinde tanımlanmış holomorf bir fonksiyonun tamamen, fonksiyonun disk sınırındaki değerleri tarafından belirlendiğini ifade eder. Ayrıca, holomorf bir fonksiyonun tüm türevleri için formül elde etmekte de kullanılabilir. Cauchy formülünün analitik önemi karmaşık analizde "türev alma integral almaya denktir" ifade etmesidir: Bu yüzden karmaşık türevlilik, integral alma gibi, gerçel analizde olmayan düzgün limitler altında iyi davranma özelliğine sahiptir.

Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.

<span class="mw-page-title-main">Euler özdeşliği</span>

Matematiksel çözümlemede Euler özdeşliği olarak adlandırılan ve Leonhard Euler tarafından bulunan eşitlik

Matematikte, Gauss sabiti, G ile gösterilir,1 ve karekök 2 aritmetik-geometrik ortalama'sının tersi olarak tanımlanır.

Matematikte Hardy teoremi, karmaşık analizde holomorf fonksiyonların büyüme davranışlarıyla ilgili bir sonuçtur.

Gauss-Legendre Algoritması π sayısının basamaklarını hesaplamak için kullanılan bir algoritmadır. Sadece 25 iterasyonda π sayısının 45 milyon basamağını doğru olarak hesaplıyor.

<span class="mw-page-title-main">Ferdinand von Lindemann</span> Alman matematikçi (1852–1939)

Carl Louis Ferdinand von Lindemann, 1882'de yayınlanan π'nin aşkın bir sayı olduğuna yani herhangi bir rasyonel katsayılı polinomun kökü olmadığına dair çalışması ile bilinen Alman matematikçidir.

Bu bir 'üstel konuların listesi' dir, Wikipedia sayfası. Ayrıca logaritmik konuların listesine bakınız.

Bu diferansiyel geometri konuların bir listesidir. Ve aynı zamanda Lie grubu konularının listesi metrik geometri ve diferansiyelin sözlüğü bkz.

Fizikte -ayrıca yer çekimi için Gauss akı teoremi olarak bilinen- Gauss yer çekimi yasası, Newton'un evrensel çekim yasasına temelde eşdeğer olan fizik yasasıdır. Her ne kadar Yer çekimi için Gauss yasası Newton'un yasasına denk olsa da, pek çok durumda Gauss yer çekimi yasası hesaplama yapmak için Newton'un yasasından çok daha basit ve uygundur.

<span class="mw-page-title-main">Barbier teoremi</span>

Geometride, Barbier teoremi, kesin şekli ne olursa olsun, sabit genişliğe sahip her eğrinin çevresinin, genişliğinin π katı olduğunu belirtir. Bu teorem, ilk olarak Joseph-Émile Barbier tarafından 1860'ta yayınlandı.

Bu, saf ve uygulamalı matematik tarihinin bir zaman çizelgesidir.

Bu, Wikipedia'da yer alan sayı teorisi konularıyla ilgili sayfaların bir listesidir.

Bu, matematiğin bir alt dalı ve matematiksel analizin giriş kısmı olan kalkülüs (hesap) konularının bir listesidir.