İçeriğe atla

Petzval alan eğriliği

Optik sapınç
Defokus

Eğim sapması (Tilt)
Küresel sapınç
Astigmatizm
Koma
Distorsiyon
Petzval alan eğriliği
Renkser sapınç

Alan eğriliği: görüntü "düzlem" (yay) düz bir yüzeyden (dikey çizgi) sapar.

Adını Joseph Petzval'den alan Petzval alan eğriliği,[1] optik eksene dik olan düz bir nesnenin (veya hiperfokal mesafeyi geçen düz olmayan bir nesnenin) düz bir görüntü düzleminde düzgün bir şekilde odağa getirilemediği optik sapmayı tanımlar. Alan eğriliği bir alan düzleştirici kullanılarak düzeltilebilir, tasarımlar ayrıca odak yüzeyindeki görüntü kalitesini iyileştirmek için insan gözünde olduğu gibi kavisli bir odak düzlemi içerebilir.

Parlaklık tekdüzeliğini ifade eden düz alan düzeltmesi ile karıştırılmamalıdır.

Analizi

Kepler uzay gözlemevinin görüntü sensörü dizisi, teleskopun Petzval eğriliğini telafi etmek için kavislidir.

Tüm düzlemsel dalga cephelerinin mercekten f mesafesindeki bir noktaya odaklandığı "ideal" tek elemanlı bir mercek sistemi düşünün. Bu lensi düz bir görüntü sensöründen f mesafesine yerleştirdiğinizde, optik eksene yakın görüntü noktaları mükemmel odakta olacaktır, ancak eksen dışı ışınlar görüntü sensöründen önce odak haline gelecek ve optik ile yaptıkları açının kosinüsü kadar düşecektir. eksen. Bu, insan gözünde olduğu gibi görüntüleme yüzeyi küresel olduğunda daha az sorun teşkil eder.

Güncel fotoğraf lenslerinin çoğu, alan eğriliğini en aza indirecek şekilde tasarlanmıştır ve bu nedenle, ışın açısı ile artan bir odak uzunluğuna sahiptir. 50mm'nin altında kısa odak uzunluklu lensler (ultra geniş, geniş ve normal)  tipik olarak alan eğriliğinden daha fazla zarar görür. Telefoto lenslerde tipik olarak çok az görünür alan eğriliği vardır veya hiç yoktur.[2] Petzval lens, önemli miktarda alan eğriliğine sahip bir tasarımdır; objektifle çekilen görüntüler merkezde çok keskindir, ancak daha büyük açılarda görüntü odak dışındadır. Film kameraları, özellikle lens sabit ve biliniyorsa, telafi etmek için görüntü düzlemlerini bükebilir. Bu aynı zamanda hafifçe bükülebilen plaka filmini de içerir. Deneysel ürünler üretilmiş olmasına rağmen dijital sensörlerin bükülmesi zordur.[3] 2016 itibarıyla, kavisli sensörlere sahip tek tüketici kameraları "selfie" Sony Cybershot KW-1 ve KW-11 idi. Sensörlerin büyük mozaikleri (sınırlı yonga boyutları nedeniyle zaten gerekli), daha büyük ölçeklerde bir bükülmeyi simüle etmek için şekillendirilebilir.

Petzval alan eğriliği, bir optik sistem üzerindeki i inci yüzeyinin çapı ve n yüzeyindeki birinci ve ikinci tarafı üzerine kırılma endeksleri olan Petzval toplamına eşittir.:[4]

Küresel bir aynanın Petzval eğriliği, eğriliğinin iki katıdır ve bir aynanın Petzval yarıçapı odak uzaklığına eşittir.

Alan eğriliği sapmasının azaltılması

Bu sapmayı azaltmanın bir yöntemi, kenar ışık ışınlarını ortadan kaldırmak için bir açıklık durdurucu (iris) yerleştirmektir. Ancak bu yöntem, merceğin ışık toplama gücünü büyük ölçüde azaltır.[5]

Ayrıca bakınız

  • Alan düzleştirici lens

Kaynakça

  1. ^ Optical Design Fundamentals for Infrared Systems. SPIE Press. 2001. ss. 40-. ISBN 9780819440518. Erişim tarihi: 3 Kasım 2012. 
  2. ^ "What is Field Curvature?". photographylife.com. 12 Şubat 2018. 26 Nisan 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 28 Nisan 2018. 
  3. ^ "Sony's curved sensors may allow for simpler lenses and better images". Digital Photography Review. 18 Haziran 2014. 20 Haziran 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 28 Nisan 2018. 
  4. ^ A History of the Photographic Lens. Academic Press. 1989. ss. 4-. ISBN 9780124086401. Erişim tarihi: 3 Kasım 2012. 
  5. ^ "Lens aberrations: field curvature". microscopy.berkeley.edu. 5 Eylül 2004 tarihinde kaynağından arşivlendi. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Optik</span> fizik biliminin bir alt dalı

Optik, ışık hareketlerini, özelliklerini, ışığın diğer maddelerle etkileşimini inceleyen; fiziğin ışığın ölçümünü ve sınıflandırması ile uğraşan bir alt dalı. Optik, genellikle gözle görülebilen ışık dalgalarının ve gözle görülemeyen morötesi ve kızılötesi ışık dalgalarının hareketini inceler. Çünkü ışık bir elektromanyetik dalgadır ve diğer elektromanyetik dalga türleri ile benzer özellikler gösterir.

<span class="mw-page-title-main">Optik sapınç</span>

Sapınç veya aberasyon, gerçek görüntünün, basit bir teorinin tahminlerinden olan farklılıklarına denir.

<span class="mw-page-title-main">Oküler</span>

Oküler diğer adıyla göz merceği, mikroskop, teleskop vb. sistemlerde kullanılan gözün hemen önündeki genelde akromatik mercek grubudur. Asıl amacı önündeki mercek sisteminin renk ve şekil alanlarındaki kusurlarını asgariye indirerek kullanıcıya net bir görüntü sağlamak görüntü kalitesini arttırmadır.

Geometrik optiklerde odak, görüntü noktası olarak da bilinen, ışık ışınının yakınsak kaynaklandığı noktadır. Ayrıca odak kavramsal olarak bir nokta olmasına rağmen, fiziksel olarak uzaysal boyuta sahiptir ve mavi daire olarak adlandırılır. Bu ideal olmayan odaklanma, optik görüntülemenin ışık sapmaları nedeniyle olabilir. Önemli anormalliklerin yokluğunda, en küçük muhtemel mavi daire, optik sistem açıklığındaki kırınım nedeniyle, Airy diskidir. Işık sapmaları, airy diski büyük açıklıklar için fazla küçük olduğu sürece, açıklık çapı arttıkça kötüleşmeye eğilimlidir.

Küresel Aynalar, düz aynadan farklı olarak eğriliğe sahiptirler. Ve bu eğrilik görüntüde değişikliğe sebep olur.

<span class="mw-page-title-main">Mercek</span>

Mercek ya da lens ışığın yönünü değiştiren (kıran), ışık ışınlarını birbirine yaklaştıran ya da uzaklaştıran optik alet.
Basit mercek tek bir optik elemanın kullanıldığı, bileşik mercek ise iki optik elemanın bir arada olduğu mercek tipidir. Bileşik mercek, basit mercek kullanıldığında ortaya çıkan sapınç olayının etkisini azaltmak için kullanılır. Mercekler genelde camdan ve saydam plastikten yapılır. Lensler, gereken şekle göre taşlanır, parlatılır veya kalıplanır. Bir mercek, ışığı odaklamadan kıran bir prizmadan farklı olarak, bir görüntü oluşturmak için ışığı odaklayabilir. Mikrodalga lensler, elektron lensler, akustik lensler veya patlayıcı lensler gibi görünür ışık dışındaki dalgaları ve radyasyonu benzer şekilde odaklayan veya dağıtan cihazlara da "mercekler" denir.

<span class="mw-page-title-main">Odak (optik)</span>

Odak, hayali nokta, ışık ışınlarının nesnenin birleştiği noktada oluşturduğu bir noktadır. Konsept olarak bir nokta olmasına rağmen, odak fiziksel olarak uzaysal bir boyuta sahiptir ve bu da bulanık daire olarak adlandırılır. Bu ideal olmayan odaklanma görüntüleme optiğinde sapmalara neden olur. Önemli bir sapmanın varlığında, en küçük bulanık daire optik sistemlerin açıklığındaki kırınımdan kaynaklanan Airy lekesidir. Açıklığın yarıçapı arttıkça sapmalar daha da kötüleşir, çünkü Airy lekesi en büyük sapma için çok küçük olur.

<span class="mw-page-title-main">Renk sapması</span>

Renk sapması, renk sapıncı, renkser sapınç, kromatik sapma veya kromatik aberasyon, optikte bir lensin tüm renkleri aynı uyumda odaklayamamasından kaynaklanan bir sorundur. Bunun nedeni lenslerin değişik dalga boyları ve değişik ışıklar için değişik sapma endekslerinin olmasıdır. Sapma endeksi dalga boyu arttıkça azalır. Bu sorun en çok kırılmalı teleskoplarda görülür ve çözümleri vardır ancak giderirken çıkan maliyet, kırılmalı teleskop yapımındaki en büyük problemlerdendir.

<span class="mw-page-title-main">Optik teleskop</span>

Optik teleskoplar esas olarak elektromanyetik spektrumun görünür ışık kısmından ışığı toplayan ve odaklayan teleskop çeşididir. Kullanım amacı bakılan nesnenin doğrudan görünümü için büyütülmüş görüntüsünü oluşturmak, fotoğrafını çekmek ya da elektronik görüntü sensörleri üzerinden veri toplamaktır.Optik teleskop, başlıca elektromanyetik spektrumun görünür bölgesinden olmak üzere direkt görüş için büyütülmüş bir imaj oluştururken, bir fotoğraf yaratırken ya da elektronik imaj sensörleri boyunca veri toplarken ışığı odaklar ve toplar.

Geometrik optik veya ışın optiği, ışık yayılmasını ışınlarla açıklar. Geometrik optikte ışın bir soyutlama ya da enstrumandır; ışığın belirli şartlarda yayıldığı yola yaklaşmada kullanışlıdır.

Lens ışığın kırılarak retinada odaklanmasını sağlayan saydam ve bikonveks bir yapıdır.Lens şekil değiştirerek odak uzunluğunu değiştirir. Böylece çeşitli mesafelerdeki cisimlere odaklanabilmeyi sağlar. Bu ayarlama akomodasyon diye de bilinir.Akomodasyon kameranın lens hareketleriyle odaklanması gibidir.Lensin ön yüzü arka yüze göre daha düzdür. İnsanlarda, doğal ortamındaki lensin kırma gücü yaklaşık 18 diyoptri, yani gözün toplam kırma gücünün kabaca üçte biri kadardır.

<span class="mw-page-title-main">Eğrilik yarıçapı (optik)</span>

Eğrilik yarıçapı optik tasarımda özel bir anlam ve işaret kuralına sahiptir. Küresel bir mercek veya ayna yüzeyi, sistem yerel optik ekseni boyunca veya merkezden uzakta bulunan bir eğrilik merkezine sahiptir. Mercek yüzeyinin tepe noktası, yerel optik eksende bulunur. Mercek tepe noktasından eğrilik merkezine olan mesafe, yüzeyin eğrilik yarıçapıdır.

<span class="mw-page-title-main">Schmidt–Cassegrain Teleskobu</span>

Schmidt–Cassegrain teleskobu (SC), basit küresel yüzeyleri kullanarak kompakt bir astronomik alet yapmak için bir Cassegrain reflektörünün optik yolunu bir Schmidt düzeltici plakayla birleştiren bir katadioptrik teleskoptur. Bu teleskoplar kırılmalı teleskop ile Newton teleskobunun bir melezidir. Teleskopta Schmidt–Cassegrain veya Maksutov-Cassegrain türlerinde olduğu gibi Newtonyan teleskoplardaki aynalar ve kırılmalı teleskoptaki mercekler bir arada kullanılabildiği gibi yine bu teleskop ailesinin özel bir türü olan düzeltici merceğe ihtiyaç duymayan Ritchey-Chretien tipi teleskoplarda ise sadece çukur aynalar kullanıldığı görülmektedir.

<span class="mw-page-title-main">Maksutov teleskobu</span>

Maksutov, tüm yüzeylerin neredeyse "küresel olarak simetrik" olmasından yararlanan bir tasarımda küresel bir aynayı zayıf negatif bir menisküs merceğiyle birleştiren bir katadioptrik teleskop tasarımıdır. Negatif mercek genellikle tam çaplıdır ve teleskopun giriş göz bebeğine yerleştirilir. Tasarım, yansıtıcı teleskoplarda bulunan koma gibi eksen dışı sapmaların sorunlarını düzeltirken aynı zamanda renk sapmalarını da düzeltir. 1941 yılında Rus optisyen Dmitri Dmitrievich Maksutov tarafından patenti alındı. Maksutov, tasarımını, küresel bir birincil aynadaki zıt hataları düzeltmek için negatif bir merceğin küresel hatalarını kullanan Schmidt kamerasının arkasındaki fikir üzerine kurdu. Tasarım en yaygın olarak, tüm küresel elemanları kullanabilen, böylece üretimi basitleştiren entegre bir ikincil mercek ile bir Cassegrain varyasyonunda görülür. Maksutov teleskopları, 1950'lerden beri amatör piyasada satılmaktadır.

<span class="mw-page-title-main">Küresel sapınç</span> Optik sapma

Optikte, küresel aberasyon , küresel yüzeylere sahip elemanlara sahip optik sistemlerde bulunan bir sapma türüdür. Lensler ve kavisli aynalar başlıca örneklerdir çünkü bu şeklin üretimi daha kolaydır. Merkez dışında küresel bir yüzeye çarpan ışık ışınları, merkeze yakın gelenlerden daha fazla veya daha az kırılır veya yansıtılır. Bu sapma, optik sistemler tarafından üretilen görüntülerin kalitesini düşürür.

<span class="mw-page-title-main">Koma (optik)</span>

Olarak optik, koma ya da Komatik sapmaları bir optik sistem içinde sapmaları ifade eder Bazı optik tasarımları ya da bağlı olarak doğal lens ya da diğer bileşenlerin kusurları yıldızların çarpık görünmesi, kuyruklu yıldız gibi bir kuyruğu (koma) varmış gibi görünmesi gibi eksen dışı nokta kaynakları ile sonuçlanır. Spesifik olarak, koma, giriş göz bebeği üzerindeki büyütmede bir değişiklik olarak tanımlanır. Refraktif veya difraktif optik sistemlerde, özellikle geniş bir spektral aralığı görüntüleyenlerde, koma dalga boyunun bir fonksiyonu olabilir, bu durumda bir renk sapması şeklidir.

<span class="mw-page-title-main">Katadioptrik sistem</span>

Bir katadioptrik optik sistem biri kırılma ve yansıma genellikle lens ve kavisli aynalar (katoptrik) yoluyla bir optik sistem içinde bir araya getirilmiştir. Katadioptrik kombinasyonlar, projektörler, farlar, erken deniz feneri odaklama sistemleri, optik teleskoplar, mikroskoplar ve telefoto lensler gibi odaklama sistemlerinde kullanılır. Lensleri ve aynaları kullanan diğer optik sistemlere, gözetleme katadioptrik sensörleri gibi "katadioptrik" de denir.

Astigmatizm (veya Astigmatizma) ile bir optik sistemde, iki dik düzlemde yayılan ışınların farklı odaklara sahip olduğu bir sistem sorunudur. Bir çarpı görüntüsünü oluşturmak için astigmatizma ile optik bir sistem kullanılırsa, dikey ve yatay çizgiler iki farklı mesafede keskin odakta olacaktır. Terim, "yok" anlamına gelen Yunanca α- (a- ) ve στίγμα ( stigma), ("bir işaret, nokta, delinme" anlamına gelen") birleşiminden oluşmuştur.

<span class="mw-page-title-main">Objektif (optik)</span>

Optik mühendisliğinde objektif, gözlenen nesneden ışık toplayan ve gerçek bir görüntü üretmek için ışık ışınlarını odaklayan optik elemandır. Hedefler, tek bir mercek veya ayna veya birkaç optik elemanın kombinasyonları olabilir. Mikroskoplarda, dürbünlerde, teleskoplarda, kameralarda, slayt projektörlerinde, CD çalarlarda ve diğer birçok optik alette kullanılırlar. Objektiflere ayrıca obje lensleri, obje gözlükleri veya objektif gözlükleri de denir.

<span class="mw-page-title-main">Çapraz ayna</span>

Yıldız köşegen,Yıldız diyagonal, dikme merceği, prizma diyagonal, diyagonal ayna veya çapraz ayna teleskoplarda kullanılan ve normal mercek eksenine dik bir yönden görüntülemeye izin veren açılı bir ayna veya prizmadır. Teleskop doğrultulduğunda veya başucuna yakın olduğunda daha rahat ve kolay görüntüleme sağlar. Ayrıca, elde edilen görüntünün sağ tarafı yukarı, ancak soldan sağa ters çevrilir.