İçeriğe atla

Permiyen

Permiyen
298,9 ± 0,15 - 251,902 ± 0,024 myö 
Orta Permiyen sırasında Dünya (yaklaşık 275 myö)
Kronoloji
Etimoloji
Kullanım bilgisi
Bölgesel kullanımKüresel (ICS)
Kullanılan zaman çizelgesiICS Zaman Cetveli
Tanım
Kronolojik birimDönem
Stratigrafik birimSistem
Zaman aralığının resmîyetiResmî
Alt sınırını belirleyenBir konodont olan Streptognathodus isolatus'un morfotipi Streptognathodus wabaunsensis kronoklininin içinde ilk ortaya çıkışı
Alt sınır KSKNAydaralaş, Ural Dağları, Kazakistan
50°14′45″N 57°53′29″E / 50.2458°K 57.8914°D / 50.2458; 57.8914
KSKN onayı1996[2]
Üst sınırını belirleyenBir konodont olan Hindeodus parvus'un ilk ortaya çıkışı
Üst sınır KSKNMeishan, Zhejiang, Çin
31°04′47″N 119°42′21″E / 31.0798°K 119.7058°D / 31.0798; 119.7058
KSKN onayı2001[3]
Atmosfer ve iklim verileri

Permiyen, jeolojik zaman cetvelinde, yaklaşık 298,9 milyon yıl öncesinden 251,9 milyon yıl öncesine kadar süren ve kayda değer çevresel değişikliklere sahne olan bir jeolojik dönemdir. Bu dönemde kara yaşamında bir dönüşüm görülmesine ek olarak hayvanlar ve bitkilerin evrimsel tarihinde dikkate değer olaylara sahne oldu. Permiyen Dönemi'nin adı, Rusya'da Ural Dağları çevresindeki çalışmalar sırasında, İngiliz jeolog Roderick Impey Murchison tarafından 1841 yılında tarihe kazandırıldı. Permiyen Dönemi, Karbonifer Dönemi ile Triyas Dönemi arasında yer alır ve bu dönemde gerçekleşen çeşitli birçok olaydan dolayı karada yaşayan canlı türlerinin evriminde ve çeşitliliğinde bir dönüm noktası olarak görülür.

Permiyen Dönemi, Sisuraliyen, Guadalupiyen ve Lopingiyen olmak üzere üç ana bölüme ayrılmıştır. Sisuraliyen, Ural Dağları'nın batı yamaçlarındaki katmanlarla tanımlanmışken, Guadalupiyen adını Teksas ve New Mexico'daki Guadalupe Dağları'ndan alır. Lopingyen ise adını Çin'in Jiangxi eyaletine bağlı Leping şehrinden alır. Permiyen Dönemi boyunca, karasal yaşam kayda değer ölçüde değişti ve özellikle bitki örtüsünde çeşitlilik arttı. Dünya'daki kara parçalarının çoğunluğu Pangea kıtasında toplandı ve iklim dalgalanmaları meydana geldi.

Deniz yaşamı, Permiyen-Triyas yok oluşu olarak bilinen bir soy tükenmesi olayıyla sona erdi. Kara yaşamında ise sürüngenlerin atası olan sinapsitler ve daha gelişmiş omurgalı grupları evrimleşerek ortaya çıktı. Ancak Permiyen-Triyas yok oluşu, deniz canlılarının %90 ila %95'inin, kara canlılarının ise %70'inin neslinin tükenmesine sebep oldu.

Permiyen Dönemi, sadece biyolojik evrimde değil, aynı zamanda iklimsel ve jeolojik süreçlerde de dikkate değer değişikliklere sahne olan bir dönem olarak yerküre tarihinde öne çıkar. Yanardağ faaliyetlerinin yanı sıra atmosferdeki karbondioksit seviyelerinin yükselmesi ve sürekli arazi değişiklikleri, bu dönemin ana özellikleri olarak kabul edilir. Permiyen Dönemi'nin sona erdiği dönemde gerçekleşen yok oluş, yerküre tarihindeki en büyük yok oluşlardan biridir ve bilim insanları için hâlâ soru işaretleri barındırır.

Kelime kökeni ve tarih

Permiyen Dönemi, stratigrafik sistemde bir jeolojik dönemdir. Karbonifer Dönemi'nin 268,9 milyon yıl önce sonlanmasından Triyas Dönemi'nin 251,902 milyon yıl önceki başlangıcına kadar uzanan 47 milyon yıllık bir süreyi kapsar. Paleozoyik Zaman'ın son dönemidir.[4][5][6][7][8] Permiyen teriminin kullanıma girmesinden önce, Permiyen Dönemi'ne tarihlenen kayaçlar, Almanya'da "Rotliegend" ve "Zechstein" olarak adlandırılıyor, İngiltere'de ise "New Red Sandstone" olarak biliniyordu.[9]

Permiyen terimi ilk kez 1841 yılında Londra Jeoloji Topluluğu'nun başkanı Sir Roderick Impey Murchison tarafından ortaya koyuldu. Permiyen'in bilimsel kullanıma girişi, 1840 ve 1841 yıllarında Ural Dağları çevresinde Murchison'ın Édouard de Verneuil ve Rus araştırmacılarla gerçekleştirdiği kapsamlı keşifler sonrasında oldu. Murchison, bölgede Karbonifer katmanlarını takip eden "geniş bir dizi marn, şist, kireç taşı, kumtaşı ve konglomera" olduğunu belirledi.[10][11] Murchison, Rus jeologlarla işbirliği yaparak[12] dönemin adını, yüzyıllar önce Orta Çağ'da aynı bölgede bulunan Perm Knezliği'ne adını veren çevredeki Rus bölgesi Perm'den türetti. Permiyen, şu anda Perm Krayı idari bölgesinde bulunmaktadır.[13] Jules Marcou, 1853 ile 1867 yılları arasında, Kuzey Amerika'da Mississippi Nehri'nden Colorado Nehri'ne kadar geniş bir bölgede Permiyen tabakalarını tanımladı ve Dyas ve "Triyas" terimlerinden türetilen Dyassic adlandırmasını önerdi fakat Murchison bu öneriyi 1871'de reddetti.[14] Permiyen sistemi, orijinal adlandırılmasından sonra bir yüzyıl boyunca tartışmalı bir konu olmaya devam etti. Amerika Birleşik Devletleri Jeoloji Araştırmaları Kurumu, 1941'e kadar Permiyen'i Karbonifer'in (Misisipiyen ve Pensilvaniyen'e eşdeğer) bir alt sistemi olarak tanımladı.[9]

Paleocoğrafya

Permiyen sırasında Dünya coğrafyası

Permiyen Dönemi boyunca, tüm yerkürenin ana kara kütleleri, Pangea adı verilen tek bir süperkıtada toplandı. Pangea'nın doğusunda, Cathaysia'nın kıtasal mikrolevhaları bulunmaktaydı. Pangea, ekvatoru çevreleyen ve kutuplara uzanan bir konumda yer alıyordu. Bu durum, Panthalassa Okyanusu ve Asya ile Gondvana arasında var olmuş bir okyanus olan Paleotetis Okyanusu üzerinde okyanus akıntılarına neden oluyordu. Kimmeriya kıtası, riftleşme sonucu Gondvana'dan ayrılarak kuzeye, Lavrasya'ya doğru sürüklendi ve bu hareket, Paleotetis Okyanusu'nun daralmasına neden oldu. Paleotetis'in güney ucunda yeni oluşmaya başlayan Neotetis Okyanusu, daha sonra Mezozoyik Zaman'ı domine eden okyanus hâline geldi.[15] Karbonifer Dönemi'nde Lavrasya ve Gondvana'nın çarpışması sonucu oluşmaya başlayan Orta Pangea Dağları, Permiyen'in erken dönemlerinde, yaklaşık 295 milyon yıl önce, şu anki Himalaya Dağları'na benzer bir yüksekliğe ulaştı ancak Permiyen boyunca zamanla aşınmaya uğradı.[16] Sisuraliyen Dönemi'nde Kazakistanya bloğu Baltika ile çarpıştı. Kuzey Çin Kratonu, Güney Çin Bloğu ve Sunda Levhası ise Permiyen'in sonunda birbirleriyle ve Pangea'yla birleşti.[17] Zechstein Denizi, şu anda kuzeybatı Avrupa'ya denk gelen bölgede bulunan bir hipertuzlu iç denizdi.[18]

Paleooşinografi

Deniz seviyeleri Permiyen'in erken evrelerinde (Asseliyen) bir miktar düştü. Deniz seviyesi Erken Permiyen boyunca günümüzdeki deniz seviyesinin birkaç on metre üzerinde seyretti fakat Rodiyen Çağı'nda başlayan ve Vuçepingiyen Çağı'nda tüm Paleozoyik Zaman'ın en düşük deniz seviyesine indiren keskin bir düşüş yaşandı. Bu düşüşle, deniz seviyeleri günümüzdeki deniz seviyelerine indi ve ardından Çangsingiyen'de hafif bir yükseliş gerçekleşti.[19]

İklim

Güney Avustralya'da bulunan Selwyn Kayası, Permiyen Dönemi'nden kalma, toprak altından çıkarılmış bir buzul çiziğidir

Permiyen Dönemi, çoğu diğer jeolojik zaman dilimine kıyasla ılıman bir dönemdi ve ılıman kutup-ekvator sıcaklık gradyanlarına sahipti. Permiyen'in başlangıcında, Dünya hâlâ Geç Paleozoyik buzul çağı evresindeydi. Bu buzul çağı Geç Devoniyen'in sonlarına kadar ve tüm Karbonifer Dönemi boyunca devam etti. En yoğun zamanı Pensilvaniyen Dönemi'nin sonlarına doğru gerçekleşti.[20][21] Sisuraliyen boyunca kuraklaşmada artma eğilimi vardı.[22] Erken Permiyen'de görülen kuraklaşma, özellikle Pangea'nın ekvatora yakın enlemlerinde bulunan bölgelerinde belirgindi.[23] Karbonifer-Permiyen sınırında küresel bir ısınma olayı gerçekleşti.[24] İklimin daha sıcak hâle gelmenin yanı sıra, Karbonifer'in sonlarına ve Permiyen'ın başlarına doğru belirgin bir şekilde daha kurak bir iklim hâkimdi.[25][26] Bununla birlikte, sıcaklıklar Asseliyen ve Sakmariyen çağları boyunca iklim çoğunlukla soğumaya devam etti ve Geç Paleozoyik buzul çağı doruk noktasına ulaştı.[20][21] 287 milyon yıl önce, sıcaklıklar arttı ve Güney Kutbu'ndaki buz örtüsü Artinskiyen Isınma Olayı'yla azaldı.[27] Bu ısınma olayına rağmen Doğu Avustralya'nın yüksek kesimlerinde ve muhtemelen kuzey Sibirya'nın dağlık bölgelerinde buzullar varlığını sürdürdü.[20][28][29] Geç Sisuraliyen'de Güney Afrika'daki yüksek arazilerde de buzullar varlığını sürdürdü.[30] Artinskiyen Isınma Olayı sırasında aynı zamanda dikkate değer bir kuraklaşma görüldü.[27]

Kunguriyen'in sonlarına doğru soğuma devam etti[31] ve bu durum Erken Kapitaniyen'e kadar süren bir ara buzul çağına neden oldu.[32] Ancak ortalama sıcaklıklar hâlâ Sisuraliyen'in başlangıcındaki sıcaklıklardan çok daha yüksekti.[28] Kapiteniyen'in ortalarında bir başka soğuk dönem görüldü.[32]

Ayrıca bakınız

Kaynakça

  1. ^ "Uluslararası Kronostratigrafik Çizelge" (PDF). www.stratigraphy.org. Uluslararası Stratigrafi Komisyonu. 
  2. ^ Davydov, Vladimir; Glenister, Brian; Spinosa, Claude; Ritter, Scott; Chernykh, V.; Wardlaw, B.; Snyder, W. (March 1998). "Proposal of Aidaralash as Global Stratotype Section and Point (GSSP) for base of the Permian System" (PDF). Episodes. 21: 11-18. doi:10.18814/epiiugs/1998/v21i1/003Özgürce erişilebilir. 4 Temmuz 2021 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 7 Aralık 2020. 
  3. ^ Hongfu, Yin; Kexin, Zhang; Jinnan, Tong; Zunyi, Yang; Shunbao, Wu (June 2001). "The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary" (PDF). Episodes. 24 (2): 102-114. doi:10.18814/epiiugs/2001/v24i2/004Özgürce erişilebilir. 28 Ağustos 2021 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 8 Aralık 2020. 
  4. ^ Olroyd, D.R. (2005). "Famous Geologists: Murchison". Selley, R.C.; Cocks, L.R.M.; Plimer, I.R. (Ed.). Encyclopedia of Geology, volume 2. Amsterdam: Elsevier. s. 213. ISBN 0-12-636380-3. 
  5. ^ Ogg, J.G.; Ogg, G.; Gradstein, F.M. (2016). A Concise Geologic Time Scale: 2016. Amsterdam: Elsevier. s. 115. ISBN 978-0-444-63771-0. 
  6. ^ Murchison, R.I.; de Verneuil, E.; von Keyserling, A. (1842). On the Geological Structure of the Central and Southern Regions of Russia in Europe, and of the Ural Mountains. Londra: Richard and John E. Taylor. s. 14. Permian System. (Zechstein of Germany — Magnesian limestone of England)—Some introductory remarks explain why the authors have ventured to use a new name in reference to a group of rocks which, as a whole, they consider to be on the parallel of the Zechstein of Germany and the magnesian limestone of England. They do so, not merely because a portion of deposits has long been known by the name "grits of Perm", but because, being enormously developed in the governments of Perm and Orenburg, they there assume a great variety of lithological features ... 
  7. ^ Murchison, R.I.; de Verneuil, E.; von Keyserling, A. (1845). Geology of Russia in Europe and the Ural Mountains. Vol. 1: Geology. Londra: John Murray. ss. 138-139. ...Convincing ourselves in the field, that these strata were so distinguished as to constitute a system, connected with the carboniferous rocks on the one hand, and independent of the Trias on the other, we ventured to designate them by a geographical term, derived from the ancient kingdom of Permia, within and around whose precincts the necessary evidences had been obtained. ... For these reasons, then, we were led to abandon both the German and British nomenclature, and to prefer a geographical name, taken from the region in which the beds are loaded with fossils of an independent and intermediary character; and where the order of superposition is clear, the lower strata of the group being seen to rest upon the Carboniferous rocks. 
  8. ^ Verneuil, E. (1842). "Correspondance et communications". Bulletin de la Société Géologique de France. 13: 11-14. Le nom de Système Permien, nom dérivé de l'ancien royaume de Permie, aujourd'hui gouvernement de Perm, donc ce dépôt occupe une large part, semblerait assez lui convener ... 
  9. ^ a b Benton, Michael J.; Sennikov, Andrey G. (8 Haziran 2021). "The naming of the Permian System". Journal of the Geological Society (İngilizce). 179. doi:10.1144/jgs2021-037. ISSN 0016-7649. 13 Aralık 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 18 Ağustos 2021. 
  10. ^ Benton, M.J. et al., Murchison's first sighting of the Permian, at Vyazniki in 1841 24 Mart 2012 tarihinde WebCite sitesinde arşivlendi, Proceedings of the Geologists' Association, accessed 2012-02-21
  11. ^ Murchison, Roderick Impey (1841) "First sketch of some of the principal results of a second geological survey of Russia", 16 Temmuz 2023 tarihinde Wayback Machine sitesinde arşivlendi. Philosophical Magazine and Journal of Science, series 3, 19 : 417-422. From p. 419: "The carboniferous system is surmounted, to the east of the Volga, by a vast series of marls, schists, limestones, sandstones and conglomerates, to which I propose to give the name of "Permian System," … ."
  12. ^ Henderson, C. M.; Davydov and, V. I.; Wardlaw, B. R.; Gradstein, F. M.; Hammer, O. (1 Ocak 2012), Gradstein, Felix M.; Ogg, James G.; Schmitz, Mark D.; Ogg, Gabi M. (Ed.), "Chapter 24 - The Permian Period", The Geologic Time Scale (İngilizce), Boston: Elsevier, ss. 653-679, doi:10.1016/b978-0-444-59425-9.00024-x, ISBN 978-0-444-59425-9, 1 Şubat 2022 tarihinde kaynağından arşivlendi, erişim tarihi: 1 Şubat 2022, In 1841, after a tour of Russia with French paleontologist Edouard de Verneuil, Roderick I. Murchison, in collabo- ration with Russian geologists, named the Permian System 
  13. ^ Henderson, C. M.; Davydov and, V. I.; Wardlaw, B. R.; Gradstein, F. M.; Hammer, O. (1 Ocak 2012), Gradstein, Felix M.; Ogg, James G.; Schmitz, Mark D.; Ogg, Gabi M. (Ed.), "Chapter 24 - The Permian Period", The Geologic Time Scale (İngilizce), Boston: Elsevier, s. 654, doi:10.1016/b978-0-444-59425-9.00024-x, ISBN 978-0-444-59425-9, 1 Şubat 2022 tarihinde kaynağından arşivlendi, erişim tarihi: 1 Şubat 2022, He proposed the name "Permian" based on the extensive region that composed the ancient kingdom of Permia; the city of Perm lies on the flanks of the Urals. 
  14. ^ Henderson, C.M.; Davydov and, V.I.; Wardlaw, B.R.; Gradstein, F.M.; Hammer, O. (2012), "The Permian Period", The Geologic Time Scale (İngilizce), Elsevier, ss. 653-679, doi:10.1016/b978-0-444-59425-9.00024-x, ISBN 978-0-444-59425-9, 23 Ocak 2022 tarihinde kaynağından arşivlendi, erişim tarihi: 17 Mart 2021 
  15. ^ Scotese, C. R.; Langford, R. P. (1995). "Pangea and the Paleogeography of the Permian". The Permian of Northern Pangea. ss. 3-19. doi:10.1007/978-3-642-78593-1_1. ISBN 978-3-642-78595-5. 
  16. ^ Scotese, C.R.; Schettino, A. (2017), "Late Permian-Early Jurassic Paleogeography of Western Tethys and the World", Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (İngilizce), Elsevier, ss. 57-95, doi:10.1016/b978-0-12-809417-4.00004-5, ISBN 978-0-12-809417-4, 5 Ekim 2021 tarihinde kaynağından arşivlendi, erişim tarihi: 15 Mart 2021 
  17. ^ Liu, Jun; Yi, Jian; Chen, Jian-Ye (August 2020). "Constraining assembly time of some blocks on eastern margin of Pangea using Permo-Triassic non-marine tetrapod records". Earth-Science Reviews (İngilizce). 207: 103215. Bibcode:2020ESRv..20703215L. doi:10.1016/j.earscirev.2020.103215. 9 Mart 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 29 Ağustos 2021. 
  18. ^ Radax, Christian; Gruber, Claudia; Stan-Lotter, Helga (August 2001). "Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt". Extremophiles. 5 (4): 221-228. doi:10.1007/s007920100192. PMID 11523891. 6 Haziran 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Haziran 2023. 
  19. ^ Haq, B. U.; Schutter, S. R. (3 Ekim 2008). "A Chronology of Paleozoic Sea-Level Changes". Science. 322 (5898): 64-68. Bibcode:2008Sci...322...64H. doi:10.1126/science.1161648. PMID 18832639. 
  20. ^ a b c Rosa, Eduardo L. M.; Isbell, John L. (2021). "Late Paleozoic Glaciation". Alderton, David; Elias, Scott A. (Ed.). Encyclopedia of Geology (2. bas.). Academic Press. ss. 534-545. doi:10.1016/B978-0-08-102908-4.00063-1. ISBN 978-0-08-102909-1. 28 Ocak 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Nisan 2023. 
  21. ^ a b Scotese, Christopher R.; Song, Haijun; Mills, Benjamin J.W.; van der Meer, Douwe G. (April 2021). "Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years". Earth-Science Reviews. 215: 103503. Bibcode:2021ESRv..21503503S. doi:10.1016/j.earscirev.2021.103503. ISSN 0012-8252. 7 Eylül 2021 tarihinde kaynağından arşivlendi.  Alt URL 28 Ocak 2022 tarihinde Wayback Machine sitesinde arşivlendi.
  22. ^ Mujal, Eudald; Fortuny, Josep; Marmi, Josep; Dinarès-Turell, Jaume; Bolet, Arnau; Oms, Oriol (January 2018). "Aridification across the Carboniferous–Permian transition in central equatorial Pangea: The Catalan Pyrenean succession (NE Iberian Peninsula)". Sedimentary Geology. 363: 48-68. Bibcode:2018SedG..363...48M. doi:10.1016/j.sedgeo.2017.11.005. 30 Ekim 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Ekim 2022. 
  23. ^ Tabor, Neil J.; Poulsen, Christopher J. (24 Ekim 2008). "Palaeoclimate across the Late Pennsylvanian–Early Permian tropical palaeolatitudes: A review of climate indicators, their distribution, and relation to palaeophysiographic climate factors". Palaeogeography, Palaeoclimatology, Palaeoecology. 268 (3–4): 293-310. Bibcode:2008PPP...268..293T. doi:10.1016/j.palaeo.2008.03.052. 29 Ocak 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 29 Ocak 2023. 
  24. ^ Tabor, Neil J. (15 Ocak 2007). "Permo-Pennsylvanian palaeotemperatures from Fe-Oxide and phyllosilicate δ18O values". Earth and Planetary Science Letters. 253 (1): 159-171. doi:10.1016/j.epsl.2006.10.024. ISSN 0012-821X. Erişim tarihi: 4 Kasım 2023. 
  25. ^ Michel, Lauren A.; Tabor, Neil J.; Montañez, Isabel P.; Schmitz, Mark D.; Davydov, Vladimir (15 Temmuz 2015). "Chronostratigraphy and Paleoclimatology of the Lodève Basin, France: Evidence for a pan-tropical aridification event across the Carboniferous–Permian boundary". Palaeogeography, Palaeoclimatology, Palaeoecology. 430: 118-131. Bibcode:2015PPP...430..118M. doi:10.1016/j.palaeo.2015.03.020. 
  26. ^ Tabor, Neil J.; DiMichele, William A.; Montañez, Isabel P.; Chaney, Dan S. (1 Kasım 2013). "Late Paleozoic continental warming of a cold tropical basin and floristic change in western Pangea". International Journal of Coal Geology. 119: 177-186. Bibcode:2013IJCG..119..177T. doi:10.1016/j.coal.2013.07.009. 6 Nisan 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Nisan 2023. 
  27. ^ a b Marchetti, Lorenzo; Forte, Giuseppa; Kustatscher, Evelyn; DiMichele, William A.; Lucas, Spencer G.; Roghi, Guido; Juncal, Manuel A.; Hartkopf-Fröder, Christoph; Krainer, Karl; Morelli, Corrado; Ronchi, Ausonio (March 2022). "The Artinskian Warming Event: an Euramerican change in climate and the terrestrial biota during the early Permian". Earth-Science Reviews. 226: 103922. Bibcode:2022ESRv..22603922M. doi:10.1016/j.earscirev.2022.103922. 30 Ekim 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Ekim 2022. 
  28. ^ a b Montañez, Isabel P.; Tabor, Neil J.; Niemeier, Deb; DiMichele, William A.; Frank, Tracy D.; Fielding, Christopher R.; Isbell, John L.; Birgenheier, Lauren P.; Rygel, Michael C. (5 Ocak 2007). "CO2-Forced Climate and Vegetation Instability During Late Paleozoic Deglaciation". Science. 315 (5808): 87-91. Bibcode:2007Sci...315...87M. doi:10.1126/science.1134207. PMID 17204648. 6 Nisan 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Nisan 2023. 
  29. ^ Isbell, John L.; Biakov, Alexander S.; Vedernikov, Igor L.; Davydov, Vladimir I.; Gulbranson, Erik L.; Fedorchuk, Nicholas D. (March 2016). "Permian diamictites in northeastern Asia: Their significance concerning the bipolarity of the late Paleozoic ice age". Earth-Science Reviews. 154: 279-300. Bibcode:2016ESRv..154..279I. doi:10.1016/j.earscirev.2016.01.007Özgürce erişilebilir. 
  30. ^ Götz, Annette E.; Hancox, P. John; Lloyd, Andrew (1 Haziran 2020). "Southwestern Gondwana's Permian climate amelioration recorded in coal-bearing deposits of the Moatize sub-basin (Mozambique)". Palaeoworld. Carboniferous-Permian biotic and climatic events. 29 (2): 426-438. doi:10.1016/j.palwor.2018.08.004. ISSN 1871-174X. Erişim tarihi: 9 Aralık 2023. 
  31. ^ Korte, Christoph; Jones, Peter J.; Brand, Uwe; Mertmann, Dorothee; Veizer, Ján (4 Kasım 2008). "Oxygen isotope values from high-latitudes: Clues for Permian sea-surface temperature gradients and Late Palaeozoic deglaciation". Palaeogeography, Palaeoclimatology, Palaeoecology. 269 (1–2): 1-16. Bibcode:2008PPP...269....1K. doi:10.1016/j.palaeo.2008.06.012. 6 Nisan 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Nisan 2023. 
  32. ^ a b Shi, G. R.; Nutman, Allen P.; Lee, Sangmin; Jones, Brian G.; Bann, Glen R. (February 2022). "Reassessing the chronostratigraphy and tempo of climate change in the Lower-Middle Permian of the southern Sydney Basin, Australia: Integrating evidence from U–Pb zircon geochronology and biostratigraphy". Lithos. 410-411: 106570. Bibcode:2022Litho.41006570S. doi:10.1016/j.lithos.2021.106570. 2 Ekim 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 2 Ekim 2022. 

Konuyla ilgili yayınlar

Dış bağlantılar

Öncesinde
gelen
Proterozoyik Üst Zaman
Fanerozoyik Üst Zaman
Paleozoyik ZamanMezozoyik ZamanSenozoyik Zaman
KambriyenOrdovisiyenSilüriyenDevoniyenKarboniferPermiyenTriyasJuraKretasePaleojenNeojenKv.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Jeolojik zaman cetveli</span> jeolojik yapıları zamanla ilişkilendiren kronolojik tarihleme sistemi

Jeolojik zaman cetveli, Dünya'nın jeolojik kayıtlarına dayanan bir zaman temsil şeklidir. Jeolojik zaman cetveli, kronostratigrafiyi ve jeokronolojiyi kullanan bir kronolojik tarihleme sistemidir. Özellikle yer bilimciler tarafından jeolojik tarihteki olayların zamanlamasını ve ilişkilerini tanımlamak için kullanılır. Zaman cetveli, kayaç katmanlarının incelenmesi, bu katmanların ilişkilerinin gözlemlenmesi, litoloji, paleomanyetik özellikler ve fosiller gibi özelliklerin tanımlanmasıyla geliştirilmiştir. Standartlaştırılmış uluslararası jeolojik zaman birimlerinin tanımlanması, birincil amacı jeolojik zaman bölümlerini gösteren Uluslararası Kronostratigrafik Çizelge'deki (ICC) global kronostratigrafik birimleri kesin olarak tanımlayan Uluslararası Jeolojik Bilimler Birliği'nin (IUGS) kurucu organı Uluslararası Stratigrafi Komisyonu'nun (ICS) sorumluluğundadır. Kronostratigrafik bölümler ise jeokronolojik birimleri tanımlamak için kullanılır.

<span class="mw-page-title-main">Silüriyen</span> Paleozoyik Zamanın üçüncü dönemidir ve 443 ile 419 milyon yıl önce aralığındaki süreyi kapsar

Silüriyen, Paleozoyik Zaman'ın en kısa süren jeolojik dönemi olarak bilinir. 443,8 milyon yıl önce başlayıp 419,2 milyon yıl önce sona ermiştir. Bu dönem, adını Galler'deki Silures kabilesinden alır. Silüriyen'in başlangıcı ve sonu için belirlenen kayaç tabakaları kesin olarak tanımlanmıştır ancak tam tarihler birkaç milyon yıl kadar hata payına sahiptir. Silüriyen Dönemi, Ordovisiyen-Silüriyen yok oluşu ile başlar; bu olay sırasında deniz canlılarının yaklaşık %60'ının nesli tükenmiştir.

Paleozoyik Zaman, Fanerozoyik Üst Zaman'ın üç jeolojik zamanından en eskisidir. Paleozoyik adı İngiliz jeolog Adam Sedgwick tarafından 1838'de Yunanca palaiós (παλαιός), "eski" ve zōḗ (ζωή), "yaşam" anlamına gelen sözcükleri birleştirilerek oluşturulmuştur.

<span class="mw-page-title-main">Kambriyen</span> Paleozoyik Zamanın ilk dönemi

Kambriyen, yaklaşık 538,8 milyon yıl önce başlayıp 485,4 milyon yıl öncesine kadar devam eden jeolojik dönemi ifade eder. Bu dönem, Farklı hayvan gruplarının karmaşıklaştığı, hayvanların çeşitlendiği bir dönemdir. Adını Galler'in Latince karşılığı olan Cambria'dan alan Kambriyen Dönem, yer kabuğundaki dikkate değer değişimler, deniz seviyelerinin yükselmesi ve iklim değişiklikleri gibi etkilerle şekillendi.

<span class="mw-page-title-main">Ordovisiyen</span> Paleozoyik Zamanın ikinci dönemidir ve 485 ile 444 milyon yıl önce aralığındaki süreyi kapsar

Ordovisiyen, Paleozoyik Zaman'ın ikinci dönemi olarak kabul edilir ve 485,4 milyon yıl önce başlamış ve 443,8 milyon yıl önce sona ermiştir. Ordovisiyen, jeolojik zaman cetvelindeki dönemlerden biridir. Bu dönem boyunca yerküre tarihindeki bazı kayda değer evrimsel olaylar görülmüştür.

<span class="mw-page-title-main">Devoniyen</span> Paleozoyik Zamanın dördüncü dönemi

Devoniyen, Paleozoyik Zaman içinde 419,2 milyon yıl önce sonlanan Silüriyen'den, 358,9 milyon yıl önce Karbonifer'in başlangıcına kadar süren jeolojik bir dönem ve sistemdir. Bu döneme ait kayaçların ilk olarak incelendiği yer olan İngiltere'nin Devon bölgesine atfen adlandırılmıştır.

<span class="mw-page-title-main">Karbonifer</span> Paleozoyik Zamanın beşinci dönemi

Karbonifer, Palezoyik Zaman'ın beşinci dönemidir. Yaklaşık 358,9 milyon yıl önce Devoniyen Dönemi'nin sonlanmasıyla başlamış ve 298,9 milyon yıl önce Permiyen Dönemi'nin başlamasıyla sonlanmıştır. Karbonifer, Latince kömür anlamına gelen carbō ve taşımak anlamına gelen ferō sözcüklerinin birleştirilmesiyle oluşturulmuştur. Bundan dolayı Karbonifer, Latincede "karbon-taşıyan" anlamına gelir.

<span class="mw-page-title-main">Triyas</span> 252 ile 201 milyon yıl önce arasını kapsayan, Mezozoyik Zamanın ilk dönemi

Triyas, 251,902 milyon yıl önce (myö) Permiyen Dönemi'nin sonundan 201,4 myö Jura Dönemi'nin başlangıcına kadar 50,5 milyon yılı kapsayan jeolojik bir dönem ve sistemdir. Triyas, Mezozoyik Zaman'ın ilk ve en kısa dönemidir. Dönemin hem başlangıcı hem de sonunda büyük yok oluşlar görülmüştür. Triyas Dönemi, Erken Triyas, Orta Triyas ve Geç Triyas olmak üzere üç devreye ayrılır.

<span class="mw-page-title-main">Pangea</span> Paleozoik zaman sonları ile Mezozoik zaman başlarında var olmuş dördüncü ve son süperkıta

Pangea, Paleozoyik sonları ile Mezozoyik başlarında var olmuş dördüncü ve son süperkıtadır. Yaklaşık 335 milyon yıl önce daha önceki erken kıta parçalarından toplanarak bir araya geldi ve yaklaşık 200 milyon yıl önce ayrılmaya başladı. Günümüzdeki yeryüzünün aksine, bu süperkıtanın daha fazla bir kısmı güney yarımkürede bulunuyordu ve etrafı süper okyanus Panthalassa ile çevriliydi. Pangea magma tabakasındaki konveksiyonel hareketler sonucunda güneyde Gondvana ve kuzeyde Laurasia (Lavrasya) olarak ikiye bölünmüştür. İlerleyen evrelerde bu 2 kıta daha fazla parçaya ayrılarak günümüzdeki kıtalara dönüşmüştür. Pangea, günümüze kadar var olan süperkıtaların sonuncusu ve jeologlarca biçimi ortaya çıkarılanların ilkidir.

<span class="mw-page-title-main">Gondvana</span>

Gondvana (Gondwana), Prekambriyen dönemi sonunda Antarktika, Avustralya, Afrika, Güney Amerika, Hindistan, Arabistan ve Madagaskar'ın birleşmesinden oluşmuştur. Geç Prekambriyen dönemi sonunda birleşen bu jeolojik yapı, erken Jura döneminde ilk parçalanma aşamasına gelmiştir.Birkaç kratonun birikmesiyle oluşur. Gondwana paleozoyik dönemin en büyük kitasal kabuğudur. Dünya yüzeyinin beşte biri kadar bir alan kaplamaktadır. Süper kıta olabilmek için Euramercia ile birleşti. Mesozoyik doneminde Gondwana ve pangea yavaş yavaş ayrıldı. Gondwana kalıntıları Güney Amerika, Afrika, Antarktika, Avustralya, Hindistan yarımadası ve Arabistan'da dahil olmak üzere bugünün kıta alanının yaklaşık üçte ikisini oluşturmaktadır. Gondvana (Gondwana) ismi Avusturyalı jeolog Eduard Suess tarafından üst Paleozoyik ve Mezozoyik yaşlı formasyonları bulunan merkez Hindistan'daki Gondwana bölgesine izafeten verilmiştir, zira bu bölge diğer güney kıtalarındaki bazı formasyonlara jeolojik yaş ve litolojik özellikler yönünden benzemektedir. ”Gondwana” terimi, bazı bilim adamları tarafından bölge ve süper kıta arasında açık bir ayrım yapmak için tercih edilmektedir.

<span class="mw-page-title-main">Lavrasya</span> süperkıta Pangeanın parçalanmasından sonra kuzeyde kalan kısım

Lavrasya (Laurasia), süperkıta Pangea'nın parçalanmasından sonra kuzeyde kalan kısım. Pangea öncesi 510 milyon yıl ile 280 milyon yıl ve Pangea sonrası 250 milyon yıl ile 55 milyon yıl önce var olmuştur. Günümüzde Kuzey Yarımküre'de bulunan Kuzey Amerika, Avrupa, 300 milyon yıl önce Lavrasya ve Gondvana çarpışarak Pangea'yı oluşturmuştur. 250 milyon yıl önce Pangea parçalanmaya başlayınca kuzeyde Lavrasya ve Gondvana kıtaları olmuştur. Ayrıca aralarında bugünkü Atlas Okyanusu görülmeye başlamıştır. 142 milyon yıl önce Lavrasya ve Gondvana da parçalanarak bugünkü kara parçaları oluşmuştur.

Prekambriyen, yerküre tarihinin mevcut Fanerozoyik Üst Zaman'dan önce gelen en eski bölümüdür. Prekambriyen, Fanerozoyik Üst Zaman'ın ilk dönemi olan Kambriyen'den önce geldiği için bu şekilde adlandırılmıştır. Kambriyen adlandırması ise bu çağa ait kayaçların ilk incelendiği yer olan Galler'in Latince ismi Cambria'dan gelmektedir. Prekambriyen, yerkürenin jeolojik zamanının %88'ini kapsar.

<span class="mw-page-title-main">Permiyen-Triyas yok oluşu</span> kitlesel yok oluş

Permiyen-Triyas yok oluşu (P-Tr), 251,4 milyon yıl önce meydana gelen ve Paleozoyik ile Mezozoyik dönemlerin yanı sıra Permiyen ve Triyas jeolojik dönemleri arasındaki geçişi başlatan bir kitlesel yok oluştur. Bu yok oluş, tüm deniz türlerinin %96'sının ve karadaki omurgalı türlerinin ise %70'inin tükenmesine yol açan, dünyanın en şiddetli yok oluşu olarak bilinir. Bu yok oluş olayı, ayrıca şimdiye kadar böceklerde gözlemlenen tek kitlesel yok oluş olarak da bilinir. Bazı familyaların %57'si yok olurken tüm cinslerin %83'ünün nesli tükenmiştir. Bu yok oluşta biyoçeşitlilik büyük oranda tahrip olduğu için Dünya üzerindeki yaşamın kendini toparlaması diğer soy tükenmesi olaylarından daha uzun sürmüştür. Permiyen-Triyas yok oluşu, "tüm kitlesel yok oluşların anası" olarak tanımlanır.

<span class="mw-page-title-main">Reptiliomorpha</span> tetrapod kladı

Reptiliomorpha, amniyotları ve amniyotlarla yaşayan amfibilerden daha yakın bir ortak atayı paylaşan dört üyelileri içeren bir gruptur. Vallin ve Laurin (2004) tarafından Homo sapiens'i içeren ancak Ascaphus truei'yi içermeyen en kapsamlı grup olarak tanımlanmıştır.

<span class="mw-page-title-main">Allegheniyen Orojenezi</span>

Allegheniyen Orojenezi veya diğer adıyla Apalaş Orojenezi, Apalaş Dağları ve Allegheny Dağları'nı meydana getiren jeolojik dağ oluşum olaylarından biridir. Allegheniyen Orojenezi terimi ilk olarak 1957'de H.P. Woodward tarafından ortaya koyuldu.

<span class="mw-page-title-main">Ural Orojenezi</span>

Ural Orojenezi, Ural Dağları'nı meydana getiren uzun süreli doğrusal deformasyon ve dağ oluşum olaylarıdır. Paleozoyik Zaman'ın, Geç Karbonifer ve Permiyen dönemlerinde başladı ve Triyas'tan Erken Jura dönemlerinde gerçekleşen son kıta çarpışmaları serisiyle sonlandı.

<span class="mw-page-title-main">Geç Ordovisiyen kitlesel yok oluşu</span>

Bazen Ordovisiyen sonu kitlesel yok oluşu veya Ordovisiyen-Silüriyen yok oluşu olarak da adlandırılan Geç Ordovisiyen kitlesel yok oluşu, yerküre tarihinde kabaca 443 myö meydana gelen "beş büyük" kitlesel yok oluştan ilkidir. Nesli tükenen cinslerin yüzdesi açısından genellikle bilinen en büyük ikinci yok oluş olarak kabul edilir. Bu zaman aralığında gerçekleşen küresel yok oluş, deniz canlısı cinslerinin %49-60'ını ve deniz canlısı türlerinin yaklaşık %85'ini ortadan kaldırdı. Çoğu çizelgeye göre Geç Ordovisiyen kitlesel yok oluşunu biyoçeşitlilik kaybının boyutu açısından yalnızca Permiyen–Triyas yok oluşu geçmektedir. Geç Ordovisiyen yok oluşu, tüm büyük taksonomik grupları ani bir şekilde etkileyerek bütün brakiyopod ve bryozoa familyalarının üçte biri ile çok sayıda konodont, trilobit, derisi dikenli, mercan, çift kabuklu ve graptolit grubunun ortadan kaybolmasına neden oldu. Geç Ordovisiyen kitlesel yok oluşu, taksonomik açıdan büyüklüğüne rağmen diğer kitlesel yok oluşlara kıyasla ekosistem yapılarında büyük değişikliklere ve herhangi bir morfolojik yeniliğe sebep olmadı. Biyoçeşitlilik, Silüriyen Dönemi'nin ilk 5 milyon yılı boyunca kademeli olarak yok oluş öncesi seviyelerine geri döndü.

<span class="mw-page-title-main">Sibirya (kıta)</span>

Sibirya, Sibirya'nın merkezindeki eski bir kratondur. Günümüzde Orta Sibirya Platosu'nu oluşturan bu bölge, Geç Karbonifer-Permiyen'de Pangea ile kaynaşmadan önce tek başına bir kara kütlesiydi. Pasif bir kıta kenarı olan Verkhoyansk Denizi, bugün Doğu Sibirya Ovası olarak bilinen yerde, Sibirya Kratonu'nun doğusunu çevreliyordu.

<span class="mw-page-title-main">Sibirya Trapları</span> Rusya 🇷🇺 ülkesinde bulunan Devasa bir Volkanik kaya bölgesi,Permiyen-Triyas yok oluşunun sebeplerinden biri olarak düşünülüyor

Sibirya Trapları Rusya'nın Sibirya bölgesinde büyük magmatik bölge olarak bilinen geniş bir volkanik kaya alanıdır. Trapları meydana getiren yanardağ patlaması, son 500 milyon yılda gerçekleşen en büyük volkanik olaylardan biridir.

<i>Seymouria</i>

Seymouria, Kuzey Amerika ve Avrupa'nın Erken Permiyen döneminde yaşamış, seymouriamorfların soyu tükenmiş bir cinsidir. Amfipi olmalarına rağmen Seymouria kara yaşamına iyi adapte olmuştu. Birçok sürüngen özelliğine sahip olan bu cinsin üyeleri ilk başta ilkel bir sürüngen zannedilmişti. Seymouria baylorensis ve Seymouria sanjuanensis ilk akla gelen türlerdir. Bunlardan tip tür olan S. baylorensis daha kuvvetli ve özelleşmişti ancak fosillerine sadece Teksas'ta rastlandı. Diğer taraftan S. sanjuanensis daha boldu ve daha geniş bir alana yayılmıştı. Daha küçük olan bu tür iyi korunmuş birçok fosilden bilinmektedir: New Mexico'nun Cutler Oluşumu'ndan çıkarılmış altı adet iskelet ve Almanya'nın Tambach Oluşumu'ndan çıkarılmış, beraber fosilleşmiş tam yetişkin bir çift iskelet.