İçeriğe atla

Peres metriği

Matematiksel fizikte, Peres metriği uygun zaman ile tanımlanır

herhangi keyfi f fonksiyon için. Eğer f x ve y ye sırasıyla bir harmonik fonksiyon ise vakum içindeki Einstein alan denklemlerini Peres metriği karşılar. Böyle bir metrik sıklıkla kütleçekimsel dalga kavramı içerisinde çalışılınır. Metrik, İsrailli fizikçi Asher Peres'in 1959 yılında ilk olarak bu tanımlanmasından ötürü bu ismi almıştır.

Ayrıca bakınız

Kaynakça

Peres, Asher (1959). "Some Gravitational Waves". Phys. Rev. Lett. Cilt 3. ss. 571-572. Bibcode:1959PhRvL...3..571P. doi:10.1103/PhysRevLett.3.571. Erişim tarihi: 27 Nisan 2013. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Del işlemcisi</span>

Yöney analizinde del işlemcisi, 3 boyutlu Kartezyen koordinatlarda nabla işlemcisine denk gelir ve simgesiyle gösterilir.

<span class="mw-page-title-main">Genel görelilik</span> kütle-zaman ilişkisini tanımlayan teori

Genel görelilik teorisi, 1915'te Albert Einstein tarafından yayımlanan, kütleçekimin geometrik teorisidir ve modern fizikte kütle çekiminin güncel açıklamasıdır. Genel görelilik, özel göreliliği ve Newton'un evrensel çekim yasasını genelleştirerek, yerçekimin uzay ve zamanın veya dört boyutlu uzayzamanın geometrik bir özelliği olarak birleşik bir tanımını sağlar. Özellikle uzayzaman eğriliğine maruz kalmış maddenin ve radyasyonun, enerjisi ve momentumuyla doğrudan ilişkilidir. Bu ilişki, kısmi bir diferansiyel denklemler sistemi olan Einstein alan denklemleriyle belirlenir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

Matematikte, bir kısmi diferansiyel denklem birkaç değişkenli bir fonksiyon ile bu fonksiyonun değişkenlere göre kısmi türevleri arasındaki ilişkiyi inceler.

Einstein alan denklemleri ya da Einstein denklemleri, yüksek hız ve büyük kütlelerde geçerli olan uzayzamanın geometrisi ile enerji ve momentum dağılımını ilişkilendiren doğrusal olmayan diferansiyel denklemler kümesidir. Einstein, bu denklemleri ilk kez 1915 yılında yayımlamıştır.

Fizikte ve matematikte, matematikçi Hermann Minkowski anısına adlandırılan Minkowski uzayı veya Minkowski uzayzamanı, Einstein'ın özel görelilik kuramının en uygun biçimde gösterimlendiği matematiksel yapıdır. Bu yapıda, bilinen üç uzay boyutu tek bir zaman boyutuyla birleştirilerek, uzay zamanını betimlemek için dört boyutlu bir çokkatlı oluşturulmuştur.

Uzayzamanda 2 nokta düşünelim ve

<span class="mw-page-title-main">Cauchy integral teoremi</span> Matematiksel analiz ile ilgili bir teorem

Matematiğin bir dalı olan karmaşık analizde, Augustin Louis Cauchy'nin ismine atfedilen Cauchy integral teoremi, karmaşık düzlemdeki holomorf fonksiyonların çizgi integralleri hakkında önemli bir teoremdir.

<span class="mw-page-title-main">Çizgi integrali</span>

Matematikte bir çizgi integrali, integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.

Karmaşık analizde kontür integrali veya kontür integrali almak karmaşık düzlemdeki yollar boyunca belli integralleri bulmak için kullanılan bir yöntemdir.

<span class="mw-page-title-main">Çokkatlı integral</span>

Çok katlı integral birden fazla değişkenli fonksiyonların belirli integralidir. İki boyutlu gerçek uzay R2'deki fonksiyonların integraline iki katlı integral, üç boyutlu gerçek uzay R3'deki fonksiyonların integraline üç katlı integral denir. Örneğin, iki değişkenli f(x, y) ve üç değişkenli f(x, y, z) fonksiyonları için aşağıdaki gibi gösterilir:

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

Kerr–Newman metriği genel relativitide yüklü, dönen kütlelerin çevresindeki uzay zaman geometrisini tarif eden Einstein–Maxwell denklemlerinin çözümüdür. Bu çözüm astrofizik alanındaki fenomenler için pek faydalı sayılmaz çünkü gözlemlenebilen astronomik objeler kayda değer net yük taşımazlar. Bu çözüm uygulama alanı yerine daha çok teorik fizik ve matematiksel ilginin bir sonucudur..

<span class="mw-page-title-main">Van Stockum tozu</span>

Genel görelilikte, Van Stockum tozu Einstein alan denklemlerinin silindirik simetri ekseni etrafında dönen tozun oluşturduğu yer çekimi alanı için kesin sonucudur. Tozun yoğunluğu eksenin uzaklığıyla beraber arttığı için çözüm oldukça yapay olmakla kalmaz, aynı zamanda genel görelilikteki bilinen en basit çözümlerden olmakla beraber aynı zamanda Pedagojik olarak önemli örneklerden biri olarak gösterilir.

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

F. Takayama and M. Yamaguchi, Phys. Lett. B 485 (2000)Genel görelilik ve Süpersimetri teorilerinin birleştirilmesi ile süper kütleçekimi oluşmuştur. Gravitino (G͂), graviton denilen varsayılmış parçacığın, süper simetrideki kalibretik Fermiyonudur. Bu parçacık, Kara madde için bir aday olarak önerilmiştir.

Teorik fzikte, Nordstrom kütleçekim kanunu genel göreliliğin bir öncülüdür. Açıkçası, Fin’li teorik fizikçi Gunnar Nordström tarafından 1912 de ve 1913 te önerilen iki ayrı teori vardır. Bunlardan ilki, hızla geçerliliğini yitirmiş, ancak ikinci, yerçekimi etkileri kavisli uzay-zaman geometrisi bakımından tamamen kabul eden. kütleçekim metrik teorisinin bilinen ilk örneği olmuştur. Nordstrom teorilerinin hiçbiri gözlem ve deney ile uyum içinde değildir. Bununla birlikte, ilkinin kısa sürede üzerindeki ilgiyi kaybetmesi, ikinciyi de etkilemiştir. İkinciden geriye kalan, kütleçekim kendine yeten relativistik teorisi. Genel görelilik ve kütleçekim teorileri için temel taşı niteliği görevi görmektedir. Bir örnek olarak, bu teori, pedagojik tartışmalar kapsamında özellikle yararlıdır.

Tetrakuark, parçacık fiziğinde, dört valans kuarktan oluşan ve varlığı tahmin edilmesine karşın henüz kanıtlanamamış egzotik mezondur. Prensipte, bir tetrakuark durumu kuantum renk dinamiği içinde yer alabilmektedir.