İçeriğe atla

Per-Olov Löwdin

Per-Olov Löwdin
Doğum28 Ekim 1916(1916-10-28)
Uppsala, İsveç
Ölüm6 Ekim 2000 (83 yaşında)
Uppsala, İsveç
Milliyet İsveç
EğitimUppsala Üniversitesi
ÖdüllerNiels Bohr Madalyası (1987)
Kariyeri
DalıFizik
Çalıştığı kurumlarUppsala Üniversitesi
Florida Üniversitesi

Per-Olov Löwdin (28 Ocak 1916 - 6 Ocak 2000) İsveçli fizikçi, Uppsala Üniversitesi'nde profesör (1960'tan 1983'e kadar), paralel olarak 1993'e kadar Florida Üniversitesi'nde profesör. Ivar Waller adı altındaki eski lisans öğrencisi, Löwdin 1950 yılında moleküler orbital hesaplamalar için simetrik ortogonalizasyon düzenlemeleri yapmıştır. Bu şema Yarı-ampirik teorileri kullanılan sıfır diferansiyel örtüşme (ZDO) yaklaşım temelidir. Löwdin ayrıca kolay kuantum mekaniğinin çeşitli teoremlerin türetmelerini matrisleri için sembolleri kullanarak oluşturmuştur. ROHF,UHF ve RES-GVB teorilerinde kullanılan meşhur “Löwdin’s pairing theorem” onun değildir. Kendisine göre George G. Hall ve King Löwdin 'in resmi olmayan önerisinden sonra resmi bir sunum yapmışlardır. 1963 ve 1971 yılları arasında yayınlanmış pertürbasyon teorisi üzerindeki 14 sayfa dizi kuantum kimyası için en iyi bölümleme tekniği olarak görülmüştür. Löwdin ayrıca 1958 yılında Uppsala'da kuantum kimyası yaz okulundan başlayarak çok etkili ve aktif bir öğretmendir. 1958 ve 1960'ta Uppsala Üniversitesi kuantum kimyası grubuna kardeş olarak Florida Üniversitesi'nde kuantum teorisi projesine başlamıştır. Uluslararası Kış Enstitüleri (başlarda Sanibel adasında olan daha sonra Gainesville alınan) yüzlerce Latin Amerikanların seksenler ve doksanlar boyunca katılımlarını sağladı. 1960 yılında Kış Enstitüsünün içindeki birleşimde Sanibel sempozyumunu kurdu. 1960'tan sonra her yıl düzenlenmiştir. Löwdin 1969'da İsveç Kraliyet Bilimler Akademisi üyesi olarak seçilmiş ve 1972'den 1984'e kadar Fizik Nobel Ödülü komitesinde bulunmuştur. Kuantum kimyası uluslararası gazetesi ve kuantum kimyası gelişmeler serisi kurucudur. Uluslararası Kuantum Moleküler Bilimler Akademisi'nin de vakıf üyesidir.

Yayınlar

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Genel görelilik</span> kütle-zaman ilişkisini tanımlayan teori

Genel görelilik teorisi, 1915'te Albert Einstein tarafından yayımlanan, kütleçekimin geometrik teorisidir ve modern fizikte kütle çekiminin güncel açıklamasıdır. Genel görelilik, özel göreliliği ve Newton'un evrensel çekim yasasını genelleştirerek, yerçekimin uzay ve zamanın veya dört boyutlu uzayzamanın geometrik bir özelliği olarak birleşik bir tanımını sağlar. Özellikle uzayzaman eğriliğine maruz kalmış maddenin ve radyasyonun, enerjisi ve momentumuyla doğrudan ilişkilidir. Bu ilişki, kısmi bir diferansiyel denklemler sistemi olan Einstein alan denklemleriyle belirlenir.

<span class="mw-page-title-main">Elektron</span> Temel elektrik yüküne sahip atomaltı parçacık

Elektron, eksi bir temel elektrik yüküne sahip bir atomaltı parçacıktır. Lepton parçacık ailesinin ilk nesline aittir ve bileşenleri ya da bilinen bir alt yapıları olmadığından genellikle temel parçacıklar olarak düşünülürler. Kütleleri, protonların yaklaşık olarak 1/1836'sı kadardır. Kuantum mekaniği özellikleri arasında, indirgenmiş Planck sabiti (ħ) biriminde ifade edilen, yarım tam sayı değerinde içsel bir açısal momentum (spin) vardır. Fermiyon olmasından ötürü, Pauli dışarlama ilkesi gereğince iki elektron aynı kuantum durumunda bulunamaz. Temel parçacıkların tamamı gibi hem parçacık hem dalga özelliklerini gösterir ve bu sayede diğer parçacıklarla çarpışabilir ya da kırınabilirler.

<span class="mw-page-title-main">Dubniyum</span>

Keşif: 1970 - Birleşik Nükleer Araştırmalar Enstitüsü, yapay, radyoaktif. İsmini Moskova'nın kuzeyindeki Dubna kasabasından almıştır, çünkü element ilk olarak orada üretilebilmiştir. Doğada bulunamaz, yalnızca laboratuvar ortamında elde edilebilir.

Takyon, ışıktan hızlı giden farazi parçacıklardır. İlk tanımı Arnold Sommerfeld'e atfedilmişse de, aslında ilk olarak George Sudarshan ve Gerald Feinberg tarafından yazılmıştır. Çoğu fizikçi için fiziğin bilinen yasaları ile tutarlı değildir, çünkü ışıktan daha hızlı parçacıkların olamayacağı tahmin edilmektedir. Takyonlar, Albert Einstein'in ünlü Genel görelilik yasasındaki v2 /c2 ifadesindeki cismin hızı (v) ışık hızından (c) büyük olursa ne olur sorusunun cevabıdırlar. Bu nedenle takyon parçacıklarının kütleleri reel sayı ile değil karmaşık sayılar ile ifade edilir aynı zamanda v daima c den büyük olacağından, takyonlar için en yavaş hız ışık hızıdır. Ancak tam olarak ışık hızında da olamazlar çünkü ışık hızında olursalar v2/c2 = 1 olacağından bu ifade tanımsız olur. Bununla birlikte, negatif kare kütle alanlar genellikle, "takyonlar" olarak adlandırılır ve aslında modern fizikte önemli bir rol oynamaya başlamıştır. Potansiyel tutarlı teoriler, ışıktan daha hızlı parçacıkların Lorentz değişmezinin kırılmasına dahil olanlara izin verir böylece özel göreceliğin altında yatan simetriye, ışığın hızı bir bariyer değildir, Böylece gerçek dünya için sınır olan ışık hızı burada da değerini korur. Buradan çıkarılacak sonuç ise, takyonların varlığının fizik ve matematik kurallarına aykırı olmadığıdır. Bunu takyonların varlığına delil olarak gösterenler vardır. Aynı (v)>(c) değerlerinin zaman denklemi içinde yerine konulması sonucunda zaman kavramının takyonlar için tıpkı kütle gibi imajiner olduğunu gösterir. Zaman gerçek olmadığı içinde zamanın oku olan entropi artışı söz konusu olmaz ve bu nedenle takyonlar evreni gerçek evrenin aksine büzüşmezler tam tersine sanal kütleleri nedeniyle çekim etkisine girmediklerinden evreni gererler. Böylece, başlanılan noktaya geri dönülen bir küresel evren modeli yerine takyon evreni için kenarları olmayan bir sonsuz evren söz konusudur. Ayrıca takyonların hızı enerjileri azaldıkça artar. Bu nedenle radyasyon yaydıkları varsayıldığında, azalan enerjileri nedeniyle sürekli hızlanırlar ve nihayet sıfır enerji için sonsuz hıza ulaşırlar. Enerji azaldıkça hızları arttığından dolayı kuvvet denilen etki hareketle aynı yönde olduğunda takyonların hızını arttırmaz tam tersine yavaşlatır. Birçok fizikçinin nötrino ve teorik takyonların özellikleri arasındaki olası bağlantıyı anlamaya çalışmış olduğuna dikkat etmek önemlidir.

<span class="mw-page-title-main">Oganesson</span> Atom numarası 118 olan yapay bir element

Oganesson; simgesi Og, atom numarası 118 olan yapay bir elementtir. Periyodik tablonun p bloğunda yer alır ve 7. periyodun son elementidir. Soy gazlar olarak adlandırılan 18. grupta yer alsa da, bu gruptaki tek yapay elementtir ve diğer soy gazların aksine reaktif olduğu tahmin edilir. Keşfedilen elementler içinde en büyük atom numarasına ve atom kütlesine sahip olanıdır. Radyoaktif bir element olan oganesson, 1 milisaniyeden az yarı ömrüyle son derece kararsızdır. Önceki tahminlerin aksine gaz değil, göreli etkilerden ötürü normal koşullar altında bir katı ve ya yarı iletken ya da bir zayıf metal olduğu öngörülür. Elementin, varlığı teyit edilmiş bir izotopu ya da sentezlenmiş bir bileşiği yoktur.

Tennesin veya Ununseptiyum, periyodik tabloda atom numarası 117 ve sembolü Ts olan kimyasal elementtir.

<span class="mw-page-title-main">Steven Weinberg</span> Amerikalı teorik fizikçi (1933 – 2021)

Steven Weinberg Amerikalı teorik fizikçi. 1979'da Abdus Salam ve Sheldon Glashow ile birlikte zayıf etkileşim ile elektromanyetik etkileşimin birleştirilmesine ve temel parçacıklar arasındaki elektromanyetik etkileşime katkılarından dolayı Nobel Fizik Ödülüne layık görülmüştür

Dolanıklık, kuantum mekaniğine özgü bir olgudur. Kuantum fiziğine göre iki benzer parçacık birbiriyle eşzamanlılığa sahiptir. Bu parçacıklar ayrı yerlerde birbirinden eşzamanlı olarak etkilenirler. İki elektron parçası ışık yılına yakın uzaklıkta olsa dahi birbirlerini etkileyebilirler. Bu sayede birbirinden ışık yılına yakın bir uzaklıkta olan bir elektron kendi çevresi etrafında sağa dönerken diğer bir elektron parçası sola dönecektir.

<span class="mw-page-title-main">Proton bozunması</span> varsayımsal parçacık bozunması

Parçacık fiziğinde proton bozunması, protonun nötr bir pion ve bir pozitron gibi daha hafif atom altı parçacıklara bozunduğu varsayımsal bir parçacık bozunma biçimidir. Proton bozunumu hipotezi ilk olarak 1967'de Andrey Saharov tarafından formüle edildi. Önemli deneysel çabalara rağmen, proton bozunması hiçbir zaman gözlemlenmedi. Bir pozitron aracılığıyla bozunursa, protonun yarı ömrü en az 1,67 x 1034 yıl olarak sınırlandırılır.

<span class="mw-page-title-main">Franck-Condon ilkesi</span>

Franck–Condon ilkesi, spektroskopide ve kuantum kimyasında bir kuraldır ve titreşimsel geçişlerin yoğunluğu olarak açıklanır. Titreşimsel geçişler uygun enerjideki fotonların emme ve emisyonundan dolayı elektronik ve titreşimsel enerji seviyelerinde eş zamanlı değişiklik olur. Prensip belirtiyor ki, elektronik geçiş sırasında eğer bu iki titreşimsel dalga fonksiyonları büyük ölçüde aşar ise bir titreşimsel enerji seviyesinden diğerine değişiklik olur.

Tetrakuark, parçacık fiziğinde, dört valans kuarktan oluşan ve varlığı tahmin edilmesine karşın henüz kanıtlanamamış egzotik mezondur. Prensipte, bir tetrakuark durumu kuantum renk dinamiği içinde yer alabilmektedir.

Parton, Richard Feynman tarafından ortaya atılan bir hadron modelidir. Stanford Doğrusal Hızlandırıcı Merkezi'nde (SLAC) 1968 yılında yapılan derin inelastik saçılma deneyleri, protonun daha küçük, nokta benzeri parçacıklardan oluştuğunu ve böylece bir temel parçacık olmadığını gösterdi. O dönemde fizikçiler bu nesneleri kuarklar ile ilişkilendirmek konusunda tereddütlü olduklarından parçacıklar, Feynman tarafından türetilen "parton" olarak adlandırdı. Bu deneyler sırasında gözlemlenen cisimler, diğer çeşnilerin de keşfedilmesiyle daha sonra yukarı ve aşağı kuark olarak tanımlanacaktı. Buna rağmen parton, hadronların bileşenlerini tanımlayan ortak bir terim olarak kullanımda kaldı.

<span class="mw-page-title-main">J/psi mezonu</span>

J/psi mezonu veya psion bir atomaltı parçacık. Bir tane tılsım kuark ve bir de tılsım antikuarktan oluşan bir çeşni değiştiren yüksüz mezonudur. Bir tılsım kuark ve bir tılsım antikuarkın bağlı hali ile oluşan mezonlar "karmoniyum" olarak anılır. En yaygın karmoniyum, düşük değişim kütlesi, 3.0969 GeV/c23,0969 GeV/c2 yani ηc̅ ' nin (2.9836 GeV/c22,9836 GeV/c2) biraz üzerinde, sebebi ile J/psi mezondur. Bu mezon ortalama 7.2×10−21 s7,2×10-21 s ömre sahiptir.Fakat bu süre tahmin edilen 1000 kat daha uzundur.

Ksi baryonları, birinci çeşni nesillerinden bir kuarka, daha yüksek çeşnili nesillerinden ise iki kuarka sahip, Ξ sembolüyle gösterilen hadron parçacığı ailesidir. Bu nedenlerden ötürü bu tip parçacıklar birer baryondur, toplam izospinleri 1/2'dir ve nötr olabildikleri gibi +2, +1 ya da -1 temel yüke sahip olabilirler. Yüklü Ksi baryonları ilk kez 1952'de, Manchester grubu tarafından gerçekleştirilen kozmik ışın deneyleri sırasında gözlemlenmiştir. Nötr Ksi baryonlarının ilk kez gözlemlenmesi ise 1959'da, Lawrence Berkeley Ulusal Laboratuvarı'nda gerçekleştirildi. Kararsız durumları, bozunma zinciri sonucunda daha hafif parçacıklara bozunmaları sebebiyle geçmişte çağlayan parçacıklar olarak da anılmaktaydılar.

Kuantum elektrodinamiğinde bir parçacığın anormal manyetik momenti, döngülerle beraber Feynman diyagramları ile ifade edilen kuantum mekaniğinin, o parçanın manyetik momentine etkilerinin bir katkısıdır.

Kuantum Hall etkisi, Hall etkisinin kuantum mekaniği sürümüdür. Birbirine dik elektriksel ve manyetik alan içerisindeki bir iletken veya yarı iletkenden hem elektriksel alan yönünde hem de elektriksel ve manyetik alana dik yönde akım geçer. Geçen akıma göre her iki doğrultuda da iletkenlik ölçüldüğünde iletkenliğin manyetik alanının tersiyle doğru orantılı olduğu görülür. B=10 Tesla gibi yüksek manyetik alanlarda ise bu orantı doğrusallıktan sapar ve doldurma çarpanının belirli katlarında enine iletkenlikte düz bölgeler gözlenir. Bu bölgeler doldurma çarpanının tam sayı katlarında gözlenirse tam sayı kuantum Hall etkisi, kesirli katlarında gözlenirse kesirli kuantum Hall etkisi denir. Bu düzlüklerdeki iletkenlik değeri evrensel sabitler olan elektron yükünün karesinin, Planck sabitine bölümünün tam veya kesirli katları cinsinden gözlenir. Bu oran ince yapı sabitinin hassas olarak belirlenmesinde kullanılmaktadır. Öte yandan boyuna iletkenlik, enine iletkenlikteki manyetik alanın tersine bağlı düzlüklerin bir sonraki düzlüğe geçtiği bölgede sonlu değerler alırken düzlük bölgesinde sıfırdır.

<span class="mw-page-title-main">John Pendry</span>

Sir John Pendry, İngiliz fizikçi. Imperial College London'da teorik katı hâl fiziği anabilim dalında profesörlük yapan Pendry, metamalzemeler ve perdeleme teorileri üzerine yaptığı çalışmalar ile tanınmaktadır. 2004 yılında Sir unvanını alan fizikçi, 2014 yılında nano-optik alanına olan katkılarından dolayı Norveç Bilimler Akademisi tarafından Kavli Nanobilim Ödülü'ne layık görülmüştür.

Fizikte, Feshbach rezonansı iki yavaş atomun çarpışması üzerine, kısa ömürlü istikrarsız bir bileşik oluşturarak geçici olarak birbirine yapıştıklarında ortaya çıkabilir. Bu, en az bir iç serbestlik derecesi ile reaksiyon koordinatları arasındaki ayrışmaya yol açan bağ(lar)ın yok olması durumunda bağlı bir durumun elde edildiği çok cisimli sistemlerin bir özelliğidir. Bir bağlı durum oluşmadığında ortaya çıkan ters durum ise şekil rezonansıdır. Adını MIT'de fizikçi olan Herman Feshbach'tan almıştır.

Metalik hidrojen, hidrojenin iletken gibi davrandığı bir fazdır. Bu faz 1935 yılında Eugene Wigner ve Hillard Bell Huntington tarafından teorik olarak öngörülmüştür.